DOI QR코드

DOI QR Code

Effects of Rolling Temperature on the Development of Microstructure, Texture, and Mechanical Properties in AZ31 Magnesium Alloy

AZ31 마그네슘 합금에서 압연온도가 미세조직과 집합조직 및 기계적 특성에 미치는 영향

  • Park, No-Jin (School of Advanced Materials & Systems Engineering, Kumoh National Institute of Technology) ;
  • Han, Sang-Ho (School of Advanced Materials & Systems Engineering, Kumoh National Institute of Technology)
  • 박노진 (금오공과대학교 신소재시스템공학부) ;
  • 한상호 (금오공과대학교 신소재시스템공학부)
  • Received : 2010.03.04
  • Published : 2010.06.22

Abstract

Wrought magnesium alloys show a low formability at room temperature, and a remarkable anisotropy of mechanical properties make it difficult to use them in a deformation process in industry. The microstructure and crystallographic texture of metals are developed during thermo-mechanical processes, and they are significant to the understanding of the mechanical properties of metals. This work studies the microstructure, texture development and tensile properties of the extruded AZ31 Mg alloy after rolling at 100 and $300^{\circ}C$. After 40% rolling at $100^{\circ}C$, many deformed twins were observed and a relatively weak texture developed. The basal poles were split and rotated towards the rolling direction about $20^{\circ}$. During 60% rolling at $300^{\circ}C$, the dynamic recrystallization (DRX) took place and developed a strong <0001>II ND fiber texture, which influenced the poor formability at room temperature.

Keywords

Acknowledgement

Supported by : 금오공과대학교

References

  1. H. E. Friedrich and B. L. Mordike (Eds.), Magnesium Technology, p.499, Springer-Verlag, Berlin (2006).
  2. M. M. Avedesian and H. Baker, Magnesium and Magnesium Alloys, p.7, ASM International, OH (1997).
  3. K. S. Nair and M. C. Mittal, Mater. Sci. Forums 30, 89 (1998).
  4. H. Yoshinga and R. Horiuchi, Mater. Trans. JIM 4, 1 (1963). https://doi.org/10.2320/matertrans1960.4.1
  5. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, Acta Mater. 51, 2055 (2003). https://doi.org/10.1016/S1359-6454(03)00005-3
  6. R. K. Mishra, A. K. Gupta, P. R. Rao, A. K. Sachdev, A. M. Kumar, and A. A. Luo, Scripta Mater. 59, 562 (2008). https://doi.org/10.1016/j.scriptamat.2008.05.019
  7. M. R. Barnett, Z. Keshavarz, A. G. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004). https://doi.org/10.1016/j.actamat.2004.07.015
  8. M. R. Barnett, N. Stanford, P. Cizek, A. Beer, Z. Xuebin, and Z. Keshavarz, JOM 81, 19 (2009).
  9. D. K. Xu, L. Liu, Y. B. Xu, and E. H. Han, Mater. Sci. Eng. A 443, 248 (2007). https://doi.org/10.1016/j.msea.2006.08.037
  10. T. Laser, Ch. Hartig, M. R. Nuernberg, D. Letzig, and R. Bormann, Acta Mater. 56, 2791 (2008). https://doi.org/10.1016/j.actamat.2008.02.010
  11. N. Stanford and M. R. Barnett, Mater. Sci. Eng. A 496, 399 (2008). https://doi.org/10.1016/j.msea.2008.05.045
  12. L. W. F. Mackenzie and M. Peguleryuz, Mater. Sci. Eng. A 480, 189 (2008). https://doi.org/10.1016/j.msea.2007.07.003
  13. L. W. F. Mackenzie and M. O. Pekguleryuz, Scripta Mater. 59, 665 (2008). https://doi.org/10.1016/j.scriptamat.2008.05.021
  14. W. J. Kim and H. T. Jeong, Materials Transactions 46, 251 (2005). https://doi.org/10.2320/matertrans.46.251
  15. N. J. Park, J. H. Hwang, and J. S. Roh, J. Kor. Inst. Met. & Mater. 47, 1 (2009).
  16. H. J. Bunge, Texture Analysis in Materials Science, p.47, Butterworths Pub., London (1982).
  17. M. R. Barnett, A. G. Beer, D. Atwell, and A. Oudin, Scripta Mater. 51, 19 (2004). https://doi.org/10.1016/j.scriptamat.2004.03.023
  18. R. Cottam, J. Robson, G. Lorimer, and B. Davis, Mater. Sci. Eng. A 485, 375 (2008). https://doi.org/10.1016/j.msea.2007.08.016
  19. Chang Dong Yim, Young Myoung Seo, and Bong Sun You, Met. Mater. Int. 15, 683 (2009). https://doi.org/10.1007/s12540-009-0683-6
  20. T. Laser, Ch. Hartig, M. R. Nuernberg, D. Letzig, and R. Bormann, Acta Mater. 56, 2791 (2008). https://doi.org/10.1016/j.actamat.2008.02.010