• Title/Summary/Keyword: matrix inequality

Search Result 533, Processing Time 0.024 seconds

Autopilot Design of an Autonomous Underwater Vehicle Using Robust Control

  • Jung, Keum-Young;Kim, In-Soo;Yang, Seung-Yun;Lee, Man-Hyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.264-269
    • /
    • 2002
  • In this paper, Η$_{\infty}$ depth and course controller of an AUV(Autonomous Underwater Vehicle) using Η$_{\infty}$ servo control is proposed. The Η$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the Η$_{\infty}$ servo problem is as fellows: first, this problem is modified as an Η$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The Η$_{\infty}$ depth and course controller are designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed Η$_{\infty}$ depth and course control system.

$H_\infty$ Depth Controller Design for Underwater Vehicles (수중운동체의 $H_\infty$ 심도제어기 설계)

  • 이만형;정금영;김인수;주효남;양승윤
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

Depth and Course Controller Design of Autonomous Underwater Vehicles using H$_\infty$ Servo Control (H$_\infty$ 서보제어를 이용한 무인 수중운동체의 심도 및 방향제어기 설계)

  • 김인수;정금영;양승윤;조상훈;정찬희;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.215-215
    • /
    • 2000
  • In this paper, depth and course controllers of autonomous underwater vehicles using H$_{\infty}$ servo control are proposed. An H$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H$_{\infty}$ servo problem is as follows: first, this problem is modified as an H$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The H$_{\infty}$ depth and course controllers ate designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed H$_{\infty}$ depth and course control systems.

  • PDF

Robust Stabilization and Guaranteed Cost Control for Discrete-time Singular Systems with Parameter Uncertainties (변수 불확실성을 가지는 이산시간 특이시스템의 강인 안정화 및 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we consider the design problem of robust stabilization and robust guaranteed cost state feedback controller for discrete-time singular systems with parameter uncertainties by LMI(linear matrix inequality) approach without semi-definite condition and decomposition of system matrices. The objective of robust stabilization controller is to construct a state feedback controller such that the closed-loop system is regular, causal, and stable. In the case of robust guaranteed cost control, the optimal value of guaranteed cost and controller design method are presented on the basis of robust stabilization control technique. Finally, a numerical example is provided to show the validity of the design methods.

Simultaneous Optimization of Structure and Control Systems Based on Convex Optimization - An approximate Approach - (볼록최적화에 의거한 구조계와 제어계의 동시최적화 - 근사적 어프로치 -)

  • Son, Hoe-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1353-1362
    • /
    • 2003
  • This paper considers a simultaneous optimization problem of structure and control systems. The problem is generally formulated as a non-convex optimization problem for the design parameters of mechanical structure and controller. Therefore, it is not easy to obtain the global solutions for practical problems. In this paper, we parameterize all design parameters of the mechanical structure such that the parameters work in the control system as decentralized static output feedback gains. Using this parameterization, we have formulated a simultaneous optimization problem in which the design specification is defined by the Η$_2$and Η$\_$$\infty$/ norms of the closed loop transfer function. So as to lead to a convex problem we approximate the nonlinear terms of design parameters to the linear terms. Then, we propose a convex optimization method that is based on linear matrix inequality (LMI). Using this method, we can surely obtain suboptimal solution for the design specification. A numerical example is given to illustrate the effectiveness of the proposed method.

Receding Horizon Control of a Parallel Hybrid Electric Vehicle (병렬형 하이브리드 차량의 동적 구간 제어)

  • Jean, Soon-Il;Kim, Ki-Back;Jo, Sung-Tae;Park, Yeong-Il;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.659-664
    • /
    • 2000
  • Fuel-consumption and catalyst-out emissions of a parallel hybrid electric vehicle are affected by operating region of an engine. In many researches, It is generally known that it is profitable in fuel- consumption to operate engine in OOL(Optimal Operating Line). We established the mathematical model of a parallel hybrid electric vehicle, which is linear time-invariant. To operate an engine in OOL, we applied RHC(Receding Horizon Control) to the driving control of a parallel hybrid electric vehicle. And it is known that the RHC has advantages such as good tracking performance under state and control constraints. This RHC is obtained by using linear matrix inequality (LMI) optimization. In this paper, there are three main topics. First, without state and control constraints, the optimal tracking of OOL was simulated. Second, with state and control constraints by engine and motor performances, the optimal tracking of OOL was simulated. In the last, we studied on the optimal gear ratio. That is to say, we combined the RHC and the iterative simulation to extract the optimal gear ratio. In this simulation, the vehicle is commanded to track the reference vehicle trajectory and the engine is operated in the optimal operating region which is made by the state constraints.

  • PDF

Observer-based decentralized fuzzy controller design of nonlinear interconnected system for PEMFC (고분자 전해질 연료전지 시스템을 위한 비선형 상호결합 시스템의 관측기 기반 분산 퍼지 제어기 설계)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.423-429
    • /
    • 2011
  • This paper deals with the observer-based decentralized fuzzy controller design for nonlinear interconnected system for PEMFC. The nonlinear interconnected system is represented by a Takagi-Sugeno (T-S) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy observer and the decentralized fuzzy controller are designed. The stability condition of the closed-loop system with the proposed controller is represented to the linear matrix inequality (LMI) form, and the observer and control gain s are obtained by LMI. An example is given to show the verification discussed throughout the paper.

A Modified Approach to Density-Induced Support Vector Data Description

  • Park, Joo-Young;Kang, Dae-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The SVDD (support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. Recently, with the objective of generalizing the SVDD which treats all training data with equal importance, the so-called D-SVDD (density-induced support vector data description) was proposed incorporating the idea that the data in a higher density region are more significant than those in a lower density region. In this paper, we consider the problem of further improving the D-SVDD toward the use of a partial reference set for testing, and propose an LMI (linear matrix inequality)-based optimization approach to solve the improved version of the D-SVDD problems. Our approach utilizes a new class of density-induced distance measures based on the RSDE (reduced set density estimator) along with the LMI-based mathematical formulation in the form of the SDP (semi-definite programming) problems, which can be efficiently solved by interior point methods. The validity of the proposed approach is illustrated via numerical experiments using real data sets.

LMI Based $H_{\infty}$ Active Vibration Control of a Structure with Output Feedback : Experiment Results (LMI에 기초한 구조물의 $H_{\infty}$ 능동진동제어 : 실험적 고찰)

  • Byun, J.H.;Kim, Y.B.;Jeong, H.J.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.83-90
    • /
    • 1999
  • 제어이론분야에서의 발전은 그러한 이론을 다방면으로 응요할 수 있는 분야를 더더욱 폭넓게 제공해 주고 있다. 자동화와 관련된 분야뿐만 아니라, 건축 및 토목분야에서도 고도의 제어어이론을 응용한 예를 쉽게 접할 수 있게 되었으며, 지진동에 의한 구조물의 진동을 억제하려는 방책이 그 ??ㅣ다. 이에 관한 많은 연구에서도 알 수 있듯이, 일반적으로 구조물의 수학적 모델에만 의존하여, 즉 구조물의 설계파라미터는 이미 설계되어져 있다는 가정하에 제어계를 설계하고 있다. 그러나 이러한 설계법에 있어서는 설계자로 하여금 구조물의 설계파라미터를 조정할 수 있는 자유도는 전혀 주어지지 않게 되며 단지 제어계의 파라미터를 조정하는 자유도만 허용된다. 이러한 문제점을 극복하기 위해 구조계 및 제어기의 설계파라미터를 동시에 조절할 수 있는 자유도가 허용되는 '구조계/제어계의 동시 최적화' 기법이 있다. 따라서 본 논문에서는 교량의 주탑 및 해양구조물 등의 진동제어 문제에 이러한 설계기법을 이용하여 주어진 설계사양을 만족하도록 구조계 및 제어계의 파라미터를 최적화 한다. 특히 본 논문에서는 제어계 설계 문제에 있어서의 일반적인 경우를 고려하여 상태의 일부가 관측된다고 가정하고 출력피드백의 경우에 대해 고찰하고 있다. 이때의 설계사양은 선형행렬부등식(LMI)으로 주어지며, 실험을 통하여 본 논문에서 소개하는 설계기법의 유효성을 검증한다.

  • PDF

Sampled-data Fuzzy Controller for Network-based Systems with Neutral Type Delays (뉴트럴 타입 시간 지연을 갖는 네트워크 기반 시스템의 샘플치 퍼지 제어기 설계)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • This paper presents the stability analysis and design for a sampled-data fuzzy control system with neutral type of time delay, which is formed by a nonlinear plant and a sampled-data fuzzy controller connected in a closed loop. The sampling activity and neutral type of time delay will complicate the system dynamics and make the stability analysis much more difficult than that for a pure continuous-time fuzzy control system. Based on the fuzzy-model-based control approach, LMI(linear matrix inequality)-based stability conditions are derived to guarantee the nonlinear networked system stability. An application example will be given to show the merits and design a procedure of the proposed approach.