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1. Introduction demanding performance requirements' ? The

modeling and control problems are not

System design technology has taken on more independent. The structure design and control

interdisciplinary nature. This has been caused
by more demanding performance criteria and
design specification of all types of machines and
structures in various fields. Passive control
alone may not meet the high specifications. On
the other hand, pure active control may be very
expensive to realize. This has led researchers to
integrate the passive and active control design

In a certain optimal sense to satisfy the high
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Technology

design are not structure structure design and
control design are not separable and necessarily
are iterative. This paper introduces an iterative
integrate
design. Specifically, the algorithm simultaneously
finds: 1) the
damping ratios, and actuator location parameter,

algorithm to structure and control

optimal values of the stiffness,
and ii) an optimal stabilizing state feedback and
output feedback controller such that the active
a) the
prespecifed RMS constraints on the outputs, and

contol energy is minimized subject to

h) the constraints on the structure parameters.
The algorithm provides a systematic approach to
tune the structure parameters and design an
this algorithm is

active controller. Especially,

—83—



LMI Based Hw Active Vibration Control of a Structure with Output Feedback : Experiment Results

applied to active vibration control for a structure,
and it is easily extended to antirolling control
system design of ocean vehicles, platforms etc..

2. Problem Formulation

Consider a linear time-invariant dynamical
model for a structure illustrated in Fig. 1 with

the following representation:

Ma+D(a) g+ K(B) g =byw+ by (8 u

q
2= u, Z?ZC[“I, y=2z (D
q

where ¢geR™ is the displacement vector, ¢ and
g are the velocity and acceleration vectors,
respectively.

d .
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Fig. 1 Schematic diagram of a controlled structure

And, ueR™ is the control input vector, z,=R™
and z,€R™ is the output vector to be regulated,

yeR™ is vector of measurements, weR™ is the

disturbance.
D(a) = D+ 4D(a) =D+ Z‘\a"D’
KB = K+4KB) =K+ 3 8K, (2)
b2(8) = b2+Ab2(6)=b2+ g&,b,

where e=[a,, a;,..., @z]is the set of system

parameters that can be designed to adjust the

system damping, 8=[8, B...., B:] is the set of
system parameters that can be designed to
adjust the system stiffness, 6=[68,8,-8,] is a
vector of actuator and location parameters, the
and 5,

matrices D;, K, are the corresponding

basis matrices. The matrices M, D, K, b,, b, and
C are matrices

constant with  appropriate

dimensions that represent the nominal structure
design. Also

asla,. ayl, BB, Bul

where a,,, ay, 8,, and By are specified constants

that represent the structure design constraints

(@m Bm. denote minimum values and ay, 8y
denote the maximum values, respectively).
Define p=1{a B]. Then the state space

representation for the dynamical system (1) is
given by

x = A(p)x+ Buw+ B,y(8)u
2 = U (3)
2z, = Cx
where
q
x = [ ] AP =A+ 4A(p)
q
A == [ 0 ]”4
-M7'K -M7'D
- 0 0
240 = [ _ % g5 — 4> ap]

32(8) = Bg+ ABQ((S)\) s

— 0 - 0
Bg [M_lb ABZ(S) - [M—ldbz(a)]:
- 0
Bl [M—lb]]
p - [alr e, g, Bl’---, Bk]
pm = [alm’ cos A, Blm»---’ Bkm]
b = Law..... ¢an, B, ..., B

is a linear
function of p. The matrices A, B,, B,, C are

Here, the system matrix A(p)

real constant with appropriate dimensions, and
4 means the variation around the nominal
value. We shall make the following assumptions
for the system (3).

Assumptions : For any

pe[pm pM] and 85[6m SM])



Y. B. Kim, J. H. Byun and H. ]. Jeong

(i) The pair [A(p), B:(®] is stabilizable,
(i1) The pair [A(p), B,] is stabilizable.

3. LMI Based H. Control with Output Feedback

In this section, we give the formulation of
LMI based output feedback control in detail®. So
that the result to be introduced in this section
is natural extension of the state feedback case.
Here, the objective is to make clear this
formulation for practical use.

Let us consider a LTI system described by

Ax+ Biw+ Byu
C1x+D11w+D12u ) (4)
C2x+ D21w+ Dzzu

2
[

where x, w, », z;, and z, take values in finite
xR, we R,
The system

Cs, Dy, Dy, Dy and

dimensional  vector

ueR”, z,e R

spaces
and z, € R?.
parameters A,B, B,, C,
Dy are matrices of appropriate dimensions.

Let us consider system (4) and given a

proper real rational controller represented by

Xe
u

A.x.+ B,y 5
C.x.+D_.y (6)

where y = z, is considered.

Lemma 2” The system (4) is stabilizable with
H. disturbance attenuation y via output

feedback (5) if and only if there exist symmetric

matrices R, S satisfying the following LMI
system :
r T
.N ol AR+ RA RC‘ Bl N
R 0 ClR '_71 D” R } <0
R B Da
_r[AS+SAT SBT
(NS 0 B\R —rl Dn [E#»
] 0 Il Cl
RO
=
50

where Np and Ng
D)

In addition, there exist such controllers of order

denote bases of the null
spaces of (B, and (C,, Dy ) respectively.
k< n(reduced order) if and only if the above

three LMIs hold for some R, S that further
satisfy

rank (/- RS) < & (N

Suppose that some solution (R, S) of the LMI
systems (6), (7) has been computed. We here
give a method to construct an H. controller
from the obtained data. And, we collect the
controller parameters into a single variable 5

which is to be used in next formulation.
_[A. B,
[ & Dc] (8)

Then the matrices of closed-loop system are
obtained by

n

(9)
Co =Cy+ DpEC, Dy= Do+ D5 Dy

where
w- (48] w5 emter o
§=[9 1(3)2] 6:[6(‘)2 é]. 512 =[0 D]
Dy =[ 2]] (10)

From the state-space realization of the plant
and controller, let

Xy = Agxy+ Byw
21 = Cypyxg+Dpw (11)
2y = Cyxag+ D pw

=[&a] ¢c,=[Ca]l p, =[P
< [22]' 24 [C[r_)], ol [Dcl

be the corresponding closed-loop state-space

equation.
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We are now in the position to state the

procedure:

1. Compute two full-column-rank matrices
N, Ne R™* satisfying

MNT = [-RS (12)

2. Solve the following linear equation about X,:

S N _ I R
3. Solve the matrix inequality
AlX+X,A, XuB, CJ
BiX . -yI D]
Ccl Dc/ -7 I (14)
Ach/+ XCIAO XCIBO COT
= By X, ~yI DJ
CO DO -7 I
aT
+ | DA|ET[B™X, 0 D}]
0
okt i
+{|DEET[B X, 0 5{2]} <0
0

for the matrix variable E. Then, the matrices

A, B, C. and D. are obtained from the

solution E.

This procedure will be applied to compute
H. output feedback controller for simultaneous

optimization design.

4. The algorithm to Integrate structure and
Control System Design

Here, our problem of finding a solution to
(14) can be embedded in the
parameterized family of problems:

inequality

‘Q(XCI ’ p. yc(a, 5), 7) > 0 (15)

For this, we consider the following subproblems.

4.1 (X, p) Optimization

Here, we consider the optimal selection of the

structure parameter p.

Suppose the solution of inequality (14), (X
bns ¥en(8, 2), 7,)
system (4)

fixed. So,
Inequality:

olny

1s given for the nominal
and let the matrix y_ (5, &) be

we consider the following Matrix

AZ/(D)XC/,,JF X(‘InAcl(p) X('/nBcl C(T/‘
BZ;X cln - 7’1 D(T[ <0
Ccl Dc-l - 7’1
(16)

Theorem 1 Suppose y.(8 =) which denotes
the actuator parameter and dynamic controller
is given for the nominal system. Then the
(X.. p) Optimization problem is represented

as follows:

min ¥y
(X b7 (17)

subject to Inequality (14) and p,,< p< py

The optimal solution is denoted as (X ,+ .

Dusrtls Yui1). Then the sub-optimal dynamic

controller and  actuator  parameters are

determined from y ., (38, &), yield y,. <7,.

42 (X, y. (8, E)) Optimization

Here, we consider the selection for the actuator

type and location parameter § and dynamic
controller parameter .

Suppose the solution of the (X, ) design
100p, (X ans1 Prits ¥211) IS given for the system
with fixed v.,(8, &). Then the (X.,, v.(8. F))
optimization problem is to find a controller
subject to H. constraints. This problem can be

formulated as following theorem:

Theorem 2 Let the solution (X gui) Pnsis ¥nel),
to the (X, p) design loop be given. Then the

(X, v.(08, E)) optimization is given as follows:
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min y
(X, v.(8, E), )
subject to
AlOIX u+ X 4AL(v.) X uBa(y.)

BcT'/‘(yc)Xc[ —71
Ccl(yt) Dc[(yc)
cliv)
DIl(y.)|<0,
-y
8 8¢ 8y (18)
Therefore the optimal solution is given by

(X cns2 ycn+1(6, =), 7’n+2)- Then v,y < Ya+l-

Proof : See references 4), 5), 6), 7).

This problem gives the optimal(in general
suboptimal) value for the parameter dand new
controller =, satisfying the H, constraint. Now,
an algorithm is given to integrate structure and
system design. The basic
the (X, p)

control idea is to

iterate optimization and the

(X v.(8, E)) optimization loop.

Algorithm Consider the system represented by
equation (4) and set py=0, 8, =0, n=0. Suppose

—

EZ is given for the nominal system and the
numerical tolerance &> 0.

Step 1 . Solve the (X, p) design loop
with fixed v, (8, B) to get

(Xc/n+l pn+1, 7n+1)

Step 2 : Solve the (X, y.(8, E)) optimization
problem to get
(XL'IYI+2’ ycn+l(8. 5), 7n+2)

Step 3 If |vae1— 7a+21> €, go to Step 1,
otherwise, output
(X cint2s Drst, Y en+1(8, &), 7 yan)

Step 4 © The actuator and controller parameters are
obtained as follows:

ycn+l(6r 5)

Table Estimated Parameters

Parameters Values Unit
mass m, 150.30 kg
ma 116.50 kg
my to be designed kg
damping coef. ¢ 29.12 N/(m/s)
& 14.22 N/(m/s)
03 11.33 N/(m/s)
stiffness coef. & |  28812.00 N/m
ks 25,855.00 N/m
mot%roégrque kr to be designed N/A

5. Experiment

The model of the design object shown in Fig.
1 is considered. The equation of motion for this
system is given by

ml(x1+d) =“Clx.1"‘k1x1—6'2(x.1_x.g)
—ky(x,—x5)

m2(£2+ &’) =—-f“cz(x'g—x'1)—k2(x2—x]) (19)
‘Cg(/fg-ﬂég)

my(x3+ d) = f—cy(x3— x4)

where m;, ¢; (1=1,2,3) and &; (j=1, 2) are mass,
damping and stiffness, respectively. Especially,
m, is the active mass to suppress the vibration.
And x; denotes the state displacement. If we let

xld=x1+d, XQd=Xg+d, x34=x3+d, f= kru

then the equation (19) is represented by

my x1g == (c1+ e2) X0+ ¢y xag— (ky+ ky)xyy
‘f‘k2X2d+ C]d+ kld
My Xog = Ca xld-(c3+ Cg) de+C3 X3g (20)

+kg Xt k‘ngd“‘kTu
My X3q = Cy Xg— C3 Xza+ kru

where £r and u, denote the torque constant and

control input, respectively. And consider
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Xig = Xig, Xsqg = Xog, Xea = Xag (21) 6= kr, & =my
then, the system description is given by The constraint on the redesign parameter is
given by
x =Ap) x+ B,(Ou + E,d+ Esd
21 = U (22) 61"1:0‘1, aiMzoo, 1'21’2.
2 =Cx
where

With the numerical tolerance 0.1, the algorithm
r of section 4 gives the optimal variation of
x =[xy Xog X3 Xig X34 Xeal (23) . . .

8(kr, my) with the parameter (> 0) which is

Here, it is assumed that the passive parameter llustrated in Fig. 2. From this result, kr=1.8

p(m;, my, ki and k) is fixed. So, optimization and my=2.2 are chosen for optimal values.

parameters are given by 8(my, £;) and 5 Where y = 0.0086 and the controller parameter is

. given by
(controller parameter). Then the system matrices
of equation (22) are represented by
:‘ == AL‘ BC
C. D.
0 00
8 8 8 where
Als)= — (kb + b)Y my kim0
ko [my —ky/my 0 s e a o e )
0 0 0 >1.00871<10‘ I,::GT'XIO 34336:(10 2.645x10 2.223x10 8‘:’08,
4.457 —6.621 x10 -2.720 —6.903 —1.005%x10 —6.907
A = 6.239x10 6.615 x 10 2.848 1.766 1.075x10  —4.881
< —2.572x10% 3.405 % 10° 1.290 4.598 %10 4.866 <10 2.278 |
3.767 —1.475 —3.218 3.465x107% —~1.6M %10 ' —1.339
1 0 0 —1.016 x10° 1.665x10°  5.998  2.760x10  2.3RI1x10  8.463
0 1 0 ,
~5.653 % 10 6.504 10"
e +Oc Vm . 9m (1) (24) 4,161 <10 “LOxI0 |
1 2 ] 2/ My == |~ 7.252x10 - |—4.737%x10 = —_
¢y fmy —(er+e)imy cyfmy B, ~1.049 % 10%] * C. 5.418;102 » De (-2.2]
0 cy/my -~ ¢y [y - 1.080 7.963x10°7
—6.336 ¥ 10 —7.465x10"°
= _— T . .
B’«’(? Eg g 8 0 / k1 é "(’)Zi TkT/ (g The impulse response(the displacement of
1= cyim, . . .
E, = (000 k/m, 00]7 under plate which is observed using laser
C=1[01000 0]
Suppose
d
By =[E, E], w= | (25)
d

then, the equation (22) is rewritten as follows:

x = A(8)x+ Byw+ By(d)u
2 = u (26)

2, = Cx

Suppose that we have the freedom to redesign

the wvalues for active mass my and torque

constant £r. That 1is, the actuator redesign . . .
Fig. 2 Performances with redesign process

(iteration index  with respect to
kr, ms, 7)

parameters are
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sensor) of the open-loop structure is shown in
Fig. 3. Fig. 4 and Fig. 5 denote the impulse
response and control input of the closed-loop
with  the
closedloop structure and the controller (simul-

system associated redesigned
taneous optimization design method). The fre-
quency responses of the system with control

and without control are shown in Fig. 6.

6. Concluding Remarks

In this paper, an algorithm for integrating
structure and control system design of output

feedback case is considered. The optimization

displacement [mm]
O b h oK 2o 2 m e r 0o

1 T T

1)
)
w
'S
o
.
-
®
©
3

time [s]

Fig. 3 Impulse response (uncontrolled case)

displacement [mm], contral input [V)
I S I - D D

o
-
N
w
E-N
o
.
~
[
©
3

time [s]

Fig. 4 Impulse response and control input
(controlled case : simultaneous optimization

control)

— - sirmulation

time [s]

Fig. 5 Impulse responses
(simulation and experiment results)
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Fig. 6 Frequency responses
(-~:open loop, —:closed loop)

problem is divided into two subproblems with
iteration between the two. The first subproblem

gives the optimal values for the structure
passive parameters. The second subproblem
gives the optimal values for the actuator

location parameters and controller with the

constraint. This approach has been applied to
the vibration control system design problem of a
structure. In practical, from the experiment
results, it is clear that this approach is very

useful to the control system design such that

—89—
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the high demanding performance requirements
are achieved.
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