International Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 1, March 2007 pp. 1-6

A Modified Approach to Density-Induced Support Vector Data Description

Jooyoung Park and Daesung Kang

Department of Control and Instrumentation Engineering, Korea University
Jochiwon, Chungnam, 339-700, Korea

Abstract

The SVDD (support vector data description) is one of the most well-known one-class support vector learning methods, in
which one tries the strategy of utilizing balls defined on the feature space in order to distinguish a set of normal data from
all other possible abnormal objects. Recently, with the objective of generalizing the SVDD which treats all training data
with equal importance, the so-called D-SVDD (density-induced support vector data description) was proposed incorpo-
rating the idea that the data in a higher density region are more significant than those in a lower density region. In this
paper, we consider the problem of further improving the D-SVDD toward the use of a partial reference set for testing, and
propose an LMI (linear matrix inequality)-based optimization approach to solve the improved version of the D-SVDD
problems. Our approach utilizes a new class of density-induced distance measures based on the RSDE (reduced set den-
sity estimator) along with the LMI-based mathematical formulation in the form of the SDP (semi-definite programming)
problems, which can be efficiently solved by interior point methods. The validity of the proposed approach is illustrated

via numerical experiments using real data sets.
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1. Introduction

With a great deal of recent successes in theoretical and
empirical studies, the support vector learning method has
grown up as a viable tool in the area of intelligent sys-
tems [1, 2]. Among the important application areas for the
support vector learning, we have the one-class classifica-
tion problems (3, 4, 5, 6, 7, 8, 9, 10]. In the problems of
one-class classification, we are in general given the train-
ing data most of which are from the normal class, and af-
ter the training phase is finished, we are required to de-
cide whether each testing vector belongs to normal class
or abnormal class. One of the most well-known support
vector learning methods for the one-class problems is the
SVDD (support vector data description) [3, 4, 5. In the
SVDD, balls are used for expressing the region for the nor-
mal class. Since balls on the input domain can express only
limited class of regions, the SVDD in general enhances its
expressing power by utilizing balls on the feature space
instead of the balls on the input domain. Recently, with
the objective of overcoming a possible drawback of the
SVDD which treats all data with equal importance, the so-
called D-SVDD (density-induced support vector data de-
scription) was proposed incorporating the idea that the data
in a higher density region are more significant than those in
a lower density region in describing the normal class data
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[6]. In this paper, we consider the problem of further im-
proving the D-SVDD, and utilize an LMI (linear matrix
inequality)-based optimization approach to solve the pro-
posed improved version of the D-SVDD problems. More
specifically, the main issues addressed in this paper are as
follows: First, observing that the D-SVDD utilizes the no-
tion of the local density degree which is computed based on
the K -nearest neighborhood, which requires the full ref-
erence set for testing and is in practice very expensive,
we propose to use a new local density degree based on
the so-called RSDE (reduced set density estimator) [11],
which is of a sparse representation in the weighting co-
efficients, instead of the K-nearest neighborhood. Next,
we observe that the dual representation of both the conven-
tional D-SVDD and its improved version proposed here can
be converted into the LMI-based optimization called the
SDP (semi-definite programming) problems, and propose
to solve the D-SVDD problems after converting them into
the SDP problems. Since the SDP problems can be effi-
ciently solved by reliable and efficient convex optimization
techniques [12], the conversion into the form of the SDP is
of great practical value.

The remaining parts of this paper are organized as fol-
lows: In Section 2, preliminaries are provided regarding
SVDD, D-SVDD, LMI, SDP, and RDSE. Our main results
on improving the D-SVDD and the LMI-based formula-
tion are presented in Section 3 together with experimental
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illustrations. Finally, in Section 4, concluding remarks are
given.

2. Preliminaries

2.1 Support vector data description

The SVDD method, which approximates the support
of objects belonging to normal class, is derived as foliows
[3, 4]: Consider a ball B with the center ¢ € R? and the
radius R, and the training data set DD consisting of objects
z; € R% i =1,---,N. Note that since the training data
may be prone to noise, some part of the training data could
be abnormal objects. The main idea of the SVDD is to
find a ball that can achieve two conflicting goals simulta-
neously. First, it should be as small as possible, and with
equal importance, it should contain as many training data
as possible. Obviously, satisfactory balls satisfying these
objectives can be obtained by solving the following opti-
mization problem:

min  Lo(R%,a,8) = R2+CYN &

st |lwi—al?<R*+&,6 >0, i=1,--,N.
ey
Here, the slack variable &; represents the penalty associ-
ated with the deviation of the i-th training pattern outside
the ball. The objective function of (1) consists of the two
conflicting terms, i.e., the square of radius, B2, and the total
penalty Zfil &;. The constant C' controls relative impor-
tance of each term; thus called the trade-off constant. Note
that the dual problem of (1) is:

maxa  Yieq (@i, %) — Yoy S ey (@i, z5)
sst. SN =1 4€0,C), i=1,---,N.
@

From the Kuhn-Tucker condition one can express the cen-
ter of the SVDD ball as ¢ = Zf;l oz, and can com-
pute the radius R utilizing the distance between a and any
support vector x; on the ball boundary. After the training
phase is over, one may decide whether a given test point
x € R? belongs to the normal class utilizing the follow-
ing criterion: f(x) 2SR [z — al|? > 0. In order to
express more complex decision regions in R, one can use
the so-called feature map ¢ : R¢ — F and balls defined
on the feature space F'. Proceeding similarly as the above
and utilizing the kernel trick (¢(z), #(z)) = k(z, z), one
can find the corresponding feature-space SVDD ball By in
F, whose center and radius are ar and R, respectively. If
the Gaussian function

k(, 2) = exp(=|lz — 2[*/0®) @)

is chosen for the kernel, one has k(z,z) = 1 for each
z € R?, which is assumed throughout this paper. Finally,
note that in this case, the SVDD formulation is equivalent
to

ming Zf\; Zjvﬂ ok (s, 75)

S. t. Zi]\ilaizl, CEEE[O,C], 1::1’...’]\/'7
“)

and the resulting criterion for the normality is represented

by

fr(@) 2 R%-lg(x) ~arl?
= R%—l-}i\;22}.\?1aik(xi,x) )
—2im1 Zj:l ook (zi, z;5)
> 0.

2.2 Density-induced support vector data de-
scription

Despite its usefulness, the SVDD does not have an ex-
plicit mechanism that can reflect individual significance of
the data points separately. However, there are many cases
in real world problems in which each data point deserves
different degree of significance. Recently, an extension of
the SVDD that can assign distinctive significance for each
data point according to the local density of data was intro-
duced by Lee er al. [6], and the extension, which is called
the D-SVDD, utilizes a density-induced distance measure
based on the notion of the local density degree so that the
data having higher density degree can attract more signif-
icance than other data having lower density degree. The
essence of the D-SVDD can be summarized as follows [6]:

e The local density degree p : R? — [0, 00) is defined
for each data point z; € D as follows:

MEANg

Ky i=1,---,N, (6
d(xl’xll()), Z 2 b ( )

p(z;) = exp(w x

where 25 is the K-th nearest neighborhood of z;
with respect to the distance measure

d(ws, o) & | @ — 2K |, %)

MEAN}, is the mean distance of the K-th nearest
neighborhoods of all data, i.e.,

N
MEANg 2 % 3 d(wi,2K), )
i=1

and w € [0, 1] is the parameter controlling the sharp-
ness of p. Note that p yields higher value for data in
a higher density region.
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e The density-induced distance from each data point
z; € D to the D-SVDD ball center ap € F is de-
fined as follows:

8(xs) = {p(x)}'* || dlas) —ap || . ()

o Proceeding similar to the SVDD formulation utiliz-
ing the above density-induced distance instead of the
conventional feature-space distance, the problem of
approximating the support of the normal data with
feature-space balls is represented as the following
optimization problem:

min  Lo(R%),ap,§) :R%%—CZ?; &
s.t. 8%(z) < RE +¢,
& 20, ¢=1,--- N.

(10)

Utilizing the Lagrangian optimization theory and the
kernel trick along with the Gaussian kernel, one can
show that the center of the D-SVDD ball is expressed
as

N N
ap = (D ciplz:)d(x:)) /(Y aup(x)), (1)
=1 =1

and the dual representation of (10) becomes equiva-
lent to the following optimization problem [6]:

SN iagpee(a; hiaa)
sz;l aip(z;)
N_ Zi:l an(xl>
st Yo =1,
;€ [O,C],

min,,

12)

i=1,---,N.

Note that if p satisfies p(x;) = 1 for each ¢, which is
the case observed when w = 0 in (6), the above D-
SVDD problem can be reduced to a problem equiv-
alent to the conventional SVDD problem (4). Also
note that in [6], the following is used as the crite-

rion for testing the normality of a testing data point
€ R

fo(@) = RS — |o(z) —
=R} -1+ 230 aip(a:)k(zi, )
— e S Sl ey pla) play k(s ;)
2 07
(13)
where T 2 vazl a;p(x;).

2.3 Linear matrix inequalities and SDP
problems

Among the important tools of this paper are the linear
matrix inequalities, which mean the inequality constraints
of the form [12]

A@) 2 Ao+ :1 AL+ + oA, <0, (14)

where z 2 (21, - ,xm,) is the decision variables,
Aq, -+, Ay, are given symmetric matrices and “< stands
for “negative definite”. Note that since A(y) < 0 and
A(z) < 0 imply that A(A\y + (1 — X)z) < O for any
A € [0,1], the LMI (14) is a convex constraint on the
variable z. Also note that since multiple LMIs A (z) <
0, ---, A®)(z) < 0 can be expressed as the single LMI
diag(AW(z), -, AP)(z)) < 0, there is no distinction be-
tween a set of LMIs and a single LMI. It is well-known that
many of LMI-based optimization problems can be solved
in polynomial time [12], and a toolbox of Matlab for con-
vex problems involving LMIs is readily available [13]. The
class of optimization problems having a linear objective un-
der LMI constrains is called the SDP problems, and will
play an important role here in this paper. Note that the SDP
problems are given in the following form, and the built-in
function of the Matlab toolbox solving the class is “mincx”:
min Tz

s.t.  A(z) < B(x), (15)
where A(z) < B(x) above is a short hand notation for an
LMI inequality as in (14).

2.4 Reduced set density estimator

Based on a data sample D = {z1,---,zn} C R4
drawn from the density p(x), the general form of a kernel
density estimator is given as

N
(@7 =Y % Galw, ), (16)
i=1
where
1 —
Gl ) = 2G("), (17)

and as for the density G, we consider the Gaussian proba-
bility density function G(-) 2 <2—,$d—/2 exp(—3 |- [|?) in this
paper. As shown in [11], the v; of the kernel density es-

timator (16) minimizing the ISE (integrated squared error)
criterion defined as

/ Ip(z) — pn ;)| dz (18)
Rd

can be obtained by the following quadratic programming

problem for ~ 2 [y1- )T

min  4TCyhy/2 — " Grly

(19)
S. t. Z;\le Y= 1a Yi > 07

i=1,---,N,
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where C, is the N x N matrix whose (7, j)-th entry is
A
Ch(zi, ;) = /dgh(wii)gh(maxj)dma (20)
R

G, is the N x N matrix whose (7, j)-th entry is G (x;, z;),
and 1y is the N x 1 vector whose entries are all 1/N.
The kernel density estimator resultant from the above min-
imization is a sparse representation in the weighting coeffi-
cients [11], thus called the reduced set density estimator or
the RSDE.

3. Main Results

The D-SVDD is a generalization of the SVDD that can
assign different significance to each data point as men-
tioned above, and was shown to be able to yield better per-
formance than the conventional SVDD [6]. In this section,
we improve the D-SVDD in two respects: First, we note
that the D-SVDD utilizes the notion of the local density
degree which is computed based on the K-nearest neigh-
borhood, which requires the full reference set for testing
and is in practice very expensive. Thus, we propose to use a
new local density degree based on the RSDE, which is of a
sparse representation in the weighting coefficients, instead
of the K -nearest neighborhood. An obvious advantage in
using the RSDE instead is that it does not need the full ref-
erence set for testing. A possible inconvenience in obtain-
ing the RSDE via (19) is that there is no explicit mechanism
to control the degree of sparseness. To endow this mecha-
nism, here we slightly modify the original formulation for
the RSDE by utilizing the pre-specified constant v € (0, 1)
in the following way:

min = YTChy/2 —4TGhlN

st Y =1 ve0,1/Ny], i=1,-N.
21
The use of v in (21) is the strategy borrowed from the so-
called nu SVMs [1]. Note that from

< (Number of the non-zero ;) X @2
and
(Number of the ; having the value 1/Nv) X NLV
<m+o+w=1,
(23)
we have
Y < (Number of the non-zero ;) 7 24)
N
and
(Number of the +; having the value 1/Nv) <u. (5

N

Hence, one can see that it pre-specifies a lower bound for
the ratio of the strictly positive v; and simultaneously an
upper bound for the ratio of the ~; reaching 1/Nv with the
value of v. In this paper, we propose to use a new local
density degree function based on the RSDE obtained by
(21). More specifically, the local density degree function
p : R* — [0,00) is now defined for each training data
point z; € D as follows:

ﬁh(ﬂﬁi;’)’))),

i=1,--
MEAN,

,0(1'1) = eXp(w X 1N) (26)

where py(z;;) is the value of the RSDE (16) at z;,
MEAN,, is the mean of the p;, values over all training data,
ie.,

N
Al R
MEAN, = N E ph(%‘W)a (27)
i=1

and w € [0, 1] is the parameter controlling the sharpness of
p. Note that in [14], the p was defined similarly utilizing
the parzen-window-based p,. An advantage of the use of
(26) based on the RSDE is that it requires only a partial
reference set for testing according to the sparseness of the
RSDE, while the use of the K-nearest neighborhood or the
parzen window for computing the local density degree as in
[6] or [14] requires the full reference set for testing, which
is very expensive in practice.

As the next issue, we here observe that the dual repre-
sentation of the D-SVDD (12) which has a nonlinear ob-
jective with linear constraints can be converted into the
SDP form, which can be efficiently solved by interior point
methods [12]. Note that in [6], it was simply noted that the
dual representation (12) is a linearly constrained optimiza-
tion problem without much details on how to solve it. In
order to convert (12) into an SDP, we introduce an addi-
tional variable (3 satisfying

W vazl Z;V:1 a;ep(e:)ple;)k(xs, ;)

Z'L:l i N
— Y aipla) < B
(28)

Note that to minimize the /3 satisfying (28) is equivalent
to minimize the original objective function of (12). Also,
note that from the standard results on the Schur comple-
ment [12], the inequality (28) is equivalent to the following
LMI:

aTKL/?
Sy ciplai)

B+ SN aip(x;)

> 0,
'K;/Qa

(29)

where « is the N x 1 vector consisting of the «;, [

is the N x N identity matrix, and K ;/ % is the square-
root of the N x N matrix K, defined by K,(i,7) =
p(x;)p(x;)k(zi, z;). As a result of the above conversion
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processes, the problem of finding the dual variable vector
« in (12) can now be reformulated as the following SDP:

min f
B+ T, aip(e) aTK,"” -
KL/ N T
s.t. o 2im1 Qip(xi)
Zz‘zil o; = 1
0<o;<C, i=1,---,N
(30)

Here, note that with simple change of variables, the equal-
ity condition vazl a; = 1 can be easily eliminated from
the constraint part of the above problem, which transforms
the above into the canonical form (14). The steps for elim-
inating equalities from the above constraints are well ex-
plained in [12]. Mathematical formulation in the form of
the SDP-is of great practical value because they can be
solved by reliable and efficient convex optimization tech-
niques [12], e.g., the LMI Control Toolbox for use with
Matlab [13]. Note that all experimental results reported
in this paper are obtained utilizing the built-in function
“mincx” of the LMI Control Toolbox.

To illustrate the proposed method and compare its per-
formance with the conventional SVDD and D-SVDD, sim-
ulations were performed on the wine recognition data from
the UCI KDD archive [15]. The wine recognition data con-
sist of 178 data points belonging to three classes, and each
data point is represented by 13 attribute values. In each
simulation, the false negative rate was estimated from ten
independent runs of two-fold cross-validation for the cho-
sen normal class, and the data in other classes were used as
the testing data for the outlier class to evaluate the false pos-
itive rate. All the data were utilized after re-scaling so that
the training data points should have the spread of the unit
length along each attribute direction. The trade-off param-
eter C and the kernel width parameter o were selected via
the 10-fold cross-validation to yield the best performance
for the SVDD, and the same parameters were also used
for the D-SVDD of [6] and the version proposed in this
paper. For the density width parameter 4 in the probabil-
ity density (17) of the RSDE, h = \/trace(cov(z;)) was
used as in [14]. The average error rates (i.e., the means of
the false positive rate and the false negative rate) computed
from the simulations were summarized as follows (Here
in each case, the best value of w was found by exhaustive
search over {0.1,0.2,---,0.7}):

SVDD 7.67 18.40 8.73
D-SVDD of [6] 2.77 16.67 3.81
Proposed method(nu=0.5) 1.59 15.18 2.89

From comparing the error rates, one can see that the pro-
posed D-SVDD with v = 0.5 yields significantly better

results than the SVDD, and shows prediction accuracies
comparable to the D-SVDD of [6] even with smaller ref-
erence data sets.

4. Concluding Remarks

In this paper, we addressed the problem of improving
the D-SVDD method, which was recently proposed incor-
porating the idea that the data in high density region are
more significant than those in a lower density region in de-
scribing a target class data set. Two issues were addressed
for the improvement here. First, we observed that the de-
cision function of the conventional D-SVDD is dependent
on the use of the K -nearest neighborhood, which is ex-
pensive owing to reference to full data set, and proposed
a new way of computing local density degree based on the
RSDE, by which one can compute the local density degrees
less expensively with only a partial reference set. Next, we
observed that the dual representation of the conventional
D-SVDD and the proposed version of this paper can both
be solved utilizing the SDP formulation. This observation
can provide an efficient way to solve the one class problems
reliably and efficiently, and indeed, we conveniently used
the MATLAB LMI Control Toolbox in obtaining all the ex-
perimental results reported in this paper. Simulations per-
formed for the wine recognition data showed that the pro-
posed method can yield better results than the SVDD, and
comparable results with the conventional D-SVDD even
with smaller reference data sets. Further investigations yet
to be done include extensive comparative studies, which
will reveal the strengths and weaknesses of the proposed
method, and in-depth analysis on why the D-SVDD can
yield better performance than the conventional SVDD.
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