• Title/Summary/Keyword: mathematical knowledge for teaching

Search Result 257, Processing Time 0.069 seconds

Visualization of Linear Algebra concepts with Sage and GeoGebra (Sage와 GeoGebra를 이용한 선형대수학 개념의 Visual-Dynamic 자료 개발과 활용)

  • Lee, Sang-Gu;Jang, Ji-Eun;Kim, Kyung-Won
    • Communications of Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • This work started with recent students' conception on Linear Algebra. We were trying to help their understanding of Linear Algebra concepts by adding visualization tools. To accomplish this, we have developed most of needed tools for teaching of Linear Algebra class. Visualizing concepts of Linear Algebra is not only an aid for understanding but also arouses students' interest on the subject for a better comprehension, which further helps the students to play with them for self-discovery. Therefore, visualizing data should be prepared thoroughly rather than just merely understanding on static pictures as a special circumstance when we would study visual object. By doing this, we carefully selected GeoGebra which is suitable for dynamic visualizing and Sage for algebraic computations. We discovered that this combination is proper for visualizing to be embodied and gave a variety of visualizing data for undergraduate mathematics classes. We utilized GeoGebra and Sage for dynamic visualizing and tools used for algebraic calculation as creating a new kind of visual object for university math classes. We visualized important concepts of Linear Algebra as much as we can according to the order of the textbook. We offered static visual data for understanding and studied visual object and further prepared a circumstance that could create new knowledge. We found that our experience on visualizations in Linear Algebra using Sage and GeoGebra to our class can be effectively adopted to other university math classes. It is expected that this contribution has a positive effect for school math education as well as the other lectures in university.

Design and development of SCORM based e-Learning contents about Mathematics for the KERIS' Cyber Home Education System (KERIS의 사이버가정학습 시스템에 적합한 SCORM기반 수학과 e-Learning 컨텐츠 설계 및 개발)

  • Lee Hye-Gyung;Kim Hyang-Sook
    • Communications of Mathematical Education
    • /
    • v.20 no.3 s.27
    • /
    • pp.425-441
    • /
    • 2006
  • Entering upon 21th, the internet which bring the digital era, are changing the paradigm of education and cultivating creative and challenging person, which is the core of competitive power in knowledge-information society, is more emphasized than ever. To meet the needs of the present times, it has been concentrating its effort to improve learning-environment using e-Learning in the field of teaching. E-schoolbooks that were introduced recently by way of showing an example are representative case of this intention. Though many e-learning contents are being developed, the more speedily a society grow, the shorter the life of contents are. Moreover, the contents developed are impossible to use directly for tele-education system, so standard types adjusted for various kind of system are showing up. Among them the leading standard type is SCORM(Sharable Content Object Reference Medel) made in ADL(Advanced Distributed Learning) Corporation. The KERIS' Cyber Home Education System adopted this and is using it. So, in this study, we set the goal at designing and developing an e-learning contents and an experiment-focused mathematics that suit the KERIS' Cyber Home Education System on the basis of SCORM.

  • PDF

An Analysis Prospective Mathematics Teachers' Perception on the Use of Artificial Intelligence(AI) in Mathematics Education (수학교육에서 인공지능(AI) 활용에 관한 예비수학교사의 인식 분석)

  • Shin, Dongjo
    • Communications of Mathematical Education
    • /
    • v.34 no.3
    • /
    • pp.215-234
    • /
    • 2020
  • With the advent of the AI, the need to use AI in the field of education is widely recognized. The purpose of this study is to shed light on how prospective mathematics teachers perceive the need for AI and the role of teachers in future mathematics education. As a result, with regard to teaching, prospective teachers recognized that the use of AI in school mathematics is a demand of a new era, that various types of lesson can be implemented, and that accurate knowledge and information can be delivered. On the other hand, they recognized that AI has limitations in having cognitive and emotional interactions with students. As for mathematics learning, the prospective teachers recognized that AI can provide individualized learning, be used for supplementary learning outside of school, and stimulate students' interest in learning. However, they also said that learning through AI could undermine students' ability to think on their own. With regard to assessment, the prospective teachers recognized that AI is objective, fair and can reduce teachers' workload, but they also said that AI has limitations in evaluating students' abilities in constructed-response items and in process-focused assessment. The roles of teachers that the prospective teachers think were to conduct a lesson, emotional interaction, unstructured assessment, and counseling, and those of AI were individualized learning, rote learning, structured assessment, and administrative works.

A Study on the Definition of a Circumcenter and an Incenter of Triangle (삼각형의 외심, 내심의 정의에 관한 고찰)

  • Jun, Young-Bae;Kang, Jeong-Gi;Roh, Eun-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.355-375
    • /
    • 2011
  • This paper was designed for the purpose of helping the functional comprehension on the concept of a circumcenter and an incenter of triangle and offering the help for teaching-learning process on their definitions. We analysed the characteristic of the definition on a circumcenter and an incenter of triangle and studied the context, mean and purpose on the definition. The definition focusing on the construction is the definition stressed on the consistency of the concept through the fact that it is possible to draw figure of the concept. And this definition is the thing that consider the extend of the concept from triangle to polygon. Meanwhile this definition can be confused because the concept is not connected with the terminology. The definition focusing on the meaning is easy to memorize the concept because the concept is connected with the terminology but is difficult to search for the concept truth. And this definition is the thing that has the grounds on the occurrence but is taught in a made-knowledge. The definition focusing on both the construction and meaning is the definition that the starting point is vague in the logical proof process. We hope that the results are used to improve the understanding the concept of a circumcenter and an incenter of triangle in the field of mathematical education.

  • PDF

A Study on Productive Struggle in Mathematics Problem Solving (수학적 문제해결에서 Productive Struggle(생산적인 애씀)에 관한 연구)

  • Kim, Somin
    • Journal of the Korean School Mathematics Society
    • /
    • v.22 no.3
    • /
    • pp.329-350
    • /
    • 2019
  • Productive struggle is a student's persevering effort to understand mathematical concepts and solve challenging problems that are not easily solved, but the problem can lead to curiosity. Productive struggle is a key component of students' learning mathematics with a conceptual understanding, and supporting it in learning mathematics is one of the most effective mathematics teaching practices. In comparison to research on students' productive struggles, there is little research on preservice mathematics teachers' productive struggles. Thus, this study focused on the productive struggles that preservice mathematics teachers face in solving a non-routine mathematics problem. Polya's four-step problem-solving process was used to analyze the collected data. Examples of preservice teachers' productive struggles were analyzed in terms of each stage of the problem-solving process. The analysis showed that limited prior knowledge of the preservice teachers caused productive struggle in the stages of understanding, planning, and carrying out, and it had a significant influence on the problem-solving process overall. Moreover, preservice teachers' experiences of the pleasure of learning by going through productive struggle in solving problems encouraged them to support the use of productive struggle for effective mathematics learning for students, in the future. Therefore, the study's results are expected to help preservice teachers develop their professional expertise by taking the opportunity to engage in learning mathematics through productive struggle.

A Study on the Effects of Creative STEAM System Given by Center of Gravity Experiment (창의적 융합교육을 위한 무게중심 프로그램 개발과 적용사례 연구)

  • Kim, Su Geum;Ryu, Shi Kyu;Kim, Sun Bae
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.333-357
    • /
    • 2014
  • This study resulted from a study regarding creative STEAM System based upon an experiment with the center of gravity. The results of the study are constructed by a fusion of mathematics and physics, showing that they are the same as mathematical calculations. Also, students can find that center of gravity of an object is in equilibrium on a metal rod when the center of gravity exactly is placed on the rod. The fact that an experimental results are correspond to calculations can maximize the effectiveness of teaching. And also this study has the following effectiveness. First, the exact construction and calculations arouses good competition among students. Second, this experiment can give students a motivation for study and increase their thinking in classes because the theoretical background of center of gravity experiment is basically attributed to math and science classes in school. This study includes three different types of center-of-gravity experiments. One is a simple type of experiment in which center of gravity exists inside of an object. Another is a complicated one in which the center of gravity is also inside of an object. However, the third type is an experiment in where the center of gravity is outside of an object. Therefore, it gives students an opportunity to discuss how to confirm equilibrium on a metal rod when the object has its center of gravity outside. Having discussions in class will allow students to have a critical way of thinking. In addition, searching for a way to solve a problem will increase creativity of students as well. And the last type is finding the center of gravity of a big acrylic panel where multiple objects are on the panel. According to the survey and interview conducted by students who participated in this program, teaching based on creative STEAM system helps students to get a better understanding and more fast acquisition of knowledge. We can expect that a well-planned creative STEAM system through a continuous study will be both effective and efficient in educating critical and creative students.

  • PDF

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.