DOI QR코드

DOI QR Code

A Study on Productive Struggle in Mathematics Problem Solving

수학적 문제해결에서 Productive Struggle(생산적인 애씀)에 관한 연구

  • Received : 2019.09.06
  • Accepted : 2019.09.24
  • Published : 2019.09.30

Abstract

Productive struggle is a student's persevering effort to understand mathematical concepts and solve challenging problems that are not easily solved, but the problem can lead to curiosity. Productive struggle is a key component of students' learning mathematics with a conceptual understanding, and supporting it in learning mathematics is one of the most effective mathematics teaching practices. In comparison to research on students' productive struggles, there is little research on preservice mathematics teachers' productive struggles. Thus, this study focused on the productive struggles that preservice mathematics teachers face in solving a non-routine mathematics problem. Polya's four-step problem-solving process was used to analyze the collected data. Examples of preservice teachers' productive struggles were analyzed in terms of each stage of the problem-solving process. The analysis showed that limited prior knowledge of the preservice teachers caused productive struggle in the stages of understanding, planning, and carrying out, and it had a significant influence on the problem-solving process overall. Moreover, preservice teachers' experiences of the pleasure of learning by going through productive struggle in solving problems encouraged them to support the use of productive struggle for effective mathematics learning for students, in the future. Therefore, the study's results are expected to help preservice teachers develop their professional expertise by taking the opportunity to engage in learning mathematics through productive struggle.

Productive struggle(생산적인 애씀)이란 쉽게 풀리지는 않지만 호기심과 과제 집착을 가져올 수 있는 도전적인 문제에 대하여 해결 전략을 궁리하며 문제의 기저를 이루는 수학적 개념의 이해와 문제 해결을 향해가는 학생의 노력 과정이다. 즉, 수학적 개념을 깊게 이해하거나 문제를 해결하기 위해 끈질기게 궁리하고 스스로 해결책을 찾기 위해 노력하는 것을 의미한다. Productive struggle이 학생들의 개념이해를 바탕으로 한 수학 학습의 핵심요소로 떠오르면서, 효과적인 수학 교수를 위한 NCTM(2014)의 행동 원리 중 하나로 제시되었다. 그러나 선행연구의 대부분이 학생의 productive struggle에 집중되어 있어, 본 연구에서는 예비 수학 교사들이 비정형적 수학 문제를 해결하는 과정에서 겪는 productive struggle에 초점을 맞추었다. Polya의 문제해결 4단계를 분석틀로 사용하여 문제를 해결하는 동안 각 단계별로 예비 수학 교사가 어떤 productive struggle을 보이는지 분석하였다. 분석 결과, 새로운 유형의 문제를 접했을 때, 예비 수학 교사들의 제한된 선행지식이 문제의 이해부터 계획수립 및 실행 단계까지 productive struggle을 야기하며 문제해결 과정에 큰 영향을 미친다는 것을 발견했다. 또한, 예비 수학 교사들이 productive struggle을 겪으며 문제를 해결해봄으로써 고군분투 끝에 얻게 되는 학습의 즐거움을 느끼게 되고, 이러한 경험은 미래의 학생들에게 효과적인 수학 학습을 위해 productive struggle을 지원할 수 있도록 격려하는 역할을 하였다. 따라서 productive struggle를 통해 수학 학습에 몰두해보는 기회를 가짐으로써 예비 수학 교사들이 미래의 수학교육전문가로서의 직업적 전문성을 키우는데 도움이 될 것으로 기대된다.

Keywords

References

  1. 김남희, 나귀수, 박경미, 이경화, 정영옥 (2017). 수학교육과정과 교재연구, 서울: 경문사.
  2. 김상미 (2018). 소수 나눗셈 수업의 계획, 실행, 비평 과정에서 초등교사의 성찰과 실천에 관한 사례 연구. C-초등수학교육, 21(3), 309-327.
  3. 김선희, 김수민 (2018). 언어 네트워크 분석법을 이용한 최근 수학교육 연구 동향 탐색 - 2017년 국제수학교육 학술대회 발표 논문을 중심으로 -. 학교수학, 20(4), 591-608.
  4. 김응환 (2017). 얼굴그림(Face Plot)을 활용한 수학 영재교육의 사례연구. 한국학교수학회논문집, 20(4), 369-385.
  5. Dewey, J. (1910, 1933). How we think. Boston: Heath.
  6. Festinger, L. (1957). A theory of cognitive dissonance. Evanston, IL: Row, Peterson.
  7. Granberg, C. (2016). Discovering and addressing errors during mathematics problem-solving-A productive struggle? The Journal of Mathematical Behavior, 42, 33-48. https://doi.org/10.1016/j.jmathb.2016.02.002
  8. Hatano, G. (1988). Social and motivational bases for mathematical understanding. New Directions for Child Development, 41, 55-70. https://doi.org/10.1002/cd.23219884105
  9. Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students' learning. In J. Frank & K. Lester (Eds.), Second handbook of research on mathematics teaching and learning (pp. 371-404). Charlotte: Information Age.
  10. Hiebert, J., & Wearne, D. (2003). Developing understanding through problem solving. In H. L. Schoen & R. I. Charles (Eds.), Teaching mathematics through problem solving: Grades (pp. 6-12). Reston, VA: NCTM.
  11. Jackson, R. R., & Lambert, C. (2010). How to Support Struggling Students. Mastering the Principles of Great Teaching series. VA: ASCD..
  12. Kahan, J. A., & Schoen, H. L. (2009). Visions of problems and problems of vision: Embracing the messiness of mathematics in the world. Journal for Research in Mathematics Education, 34(2), p. 168-178. https://doi.org/10.2307/30034904
  13. Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5), 1008-1022. https://doi.org/10.1111/cogs.12107
  14. Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21(1), 45-83. https://doi.org/10.1080/10508406.2011.591717
  15. Kim, S. (2016). The Influence of Preservice Teachers' Experience and Beliefs Related to Technology Use in Mathematics Class on Their Technology-related Knowledge. Journal of the Korean School Mathematics Society, 19(4), 459-478.
  16. Livy, S., Muir, T., & Sullivan, P. (2018). Challenging tasks lead to productive struggle! Australian Primary Mathematics Classroom, 23(1), 19-24.
  17. Loibl, K., & Rummel, N. (2014). Knowing what you don't know makes failure productive. Learning and Instruction, 34, 74-85. https://doi.org/10.1016/j.learninstruc.2014.08.004
  18. Mason, J., & Johnston-Wilder, S. (2004). 수학 과제의 설계와 활용 (권오남 외 11명 역). 서울: 경문사
  19. Matthews, P. G., & Ellis, A. B. (2018). Natural alternatives to natural number: The case of ratio. Journal of Numerical Cognition, 4(1), 19-58. https://doi.org/10.5964/jnc.v4i1.97
  20. National Council of Teachers of Mathematics (NCTM) (2014). Principles to action: Ensuring mathematical success for all. Reston, VA: NCTM.
  21. Pajares, M. F. (1992). Teachers' beliefs and educational research: Cleaning up a messy construct. Review of educational research, 62(3), 307-332. https://doi.org/10.3102/00346543062003307
  22. Paoletti, T. (2015). Students' reasoning when constructing quantitatively rich situations. Paper presented at the 18th Meeting of the MAA Special Interest Group on Research in Undergraduate Mathematics Education, Pittsburgh, PA.
  23. Piaget, J. (1960). The psychology of intelligence. Garden City, NY: Littlefield, Adams Publishing.
  24. Polya, G. (1957). How to solve it (2nd ed.). Garden City, NY: Doubleday Anchor Books.
  25. Reinhart, S. C. (2000). Never Say Anything a Kid Can Say! Mathematics Teaching in the Middle School, 5(8), 478-83. https://doi.org/10.5951/MTMS.5.8.0478
  26. Renkl, A., & Atkinson, R. K. (2007). Interactive learning environments: Contemporary issues and trends. An introduction to the special issue. EducationalPsychology Review, 19(3), 235-238.
  27. Richardson, V. (2003). Preservice teachers' beliefs. In J. Raths & A. C. McAninch (Eds.), Teacher beliefs and classroom performance: The impact of teacher education (pp. 1-22). Greenwich, CT: Information Age Publishing.
  28. Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic press.
  29. Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3, 344-350. https://doi.org/10.5951/MTMS.3.5.0344
  30. Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50-80. https://doi.org/10.1080/1380361960020103
  31. Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A. (2009). Implementing standards-based math instruction: A casebook for professional development (2nd ed.). New York: Teachers College Press.
  32. Sherman, H. J., Richardson, L. I., & Yard, G. J. (2009). Teaching Learners who Struggle with Mathematics: Systematic Intervention and Remediation (2nd ed.). New Jersey: Allyn & Bacon.
  33. Stevens, I. E., Paoletti, T., Moore, K. C., Liang, B., & Hardison, H. (2017). Principles for designing tasks that promote covariational reasoning. In A. Weinberg, C. Rasmusssen, J. Rabin, M. Wawro, & S. Brown (Eds.), Proceedings of the 20th Annual Conference on Research in Undergraduate Mathematics Education (pp. 928-936). San Diego, CA.
  34. Thompson, P. W., Hatfield, N. J., Yoon, H., Joshua, S., & Byerley, C. (2017). Covariational reasoning among US and South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48, 95-111. https://doi.org/10.1016/j.jmathb.2017.08.001
  35. Townsend, C., Slavit, D., & McDuffie, A. R. (2018). Supporting all learners in productive struggle. Mathematics Teaching in the Middle School, 23(4), 216-224. https://doi.org/10.5951/mathteacmiddscho.23.4.0216
  36. Warshauer, H. K. (2015). Productive struggle in middle school mathematics classroom. Journal of Mathematics Teacher Education, 18(4), 375-400. https://doi.org/10.1007/s10857-014-9286-3
  37. Warshauer, H. K. (2011). The role of productive struggle in teaching and learning middle school mathematics (Doctoral dissertation). The University of Texas at Austin, Austin, TX.
  38. Zaslavsky, O. (2005). Seizing the opportunity to create uncertainty in learning mathematics. Educational Studies in Mathematics, 60(3), 297-321. https://doi.org/10.1007/s10649-005-0606-5
  39. Zeybek, Z. (2016). Productive struggle in a geometry class. International Journal of Research in Education and Science, 2(2), 396-415. https://doi.org/10.21890/ijres.86961