• 제목/요약/키워드: mathematical

검색결과 31,224건 처리시간 0.04초

Advancing Mathematical Activity: A Practice-Oriented View of Advanced Mathematical Thinking

  • Rasmussen, Chris;Zandieh, Michelle;King, Karen;Teppo, Anne
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권2호
    • /
    • pp.9-33
    • /
    • 2004
  • The purpose of this paper is to contribute to the dialogue about the notion of advanced mathematical thinking by offering an alternative characterization for this idea, namely advancing mathematical activity. We use the term advancing (versus advanced) because we emphasize the progression and evolution of students' reasoning in relation to their previous activity. We also use the term activity, rather than thinking. This shift in language reflects our characterization of progression in mathematical thinking as acts of participation in a variety of different socially or culturally situated mathematical practices. We emphasize for these practices the changing nature of student' mathematical activity and frame the process of progression in terms of multiple layers of horizontal and vertical mathematizing.

  • PDF

Research of the Relationships between Self-control, Thinking Quality and Mathematical Academic Achievement for Senior School Students

  • Yu, Wenhua;Yu, Ping
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제14권1호
    • /
    • pp.79-98
    • /
    • 2010
  • To analyze the relationships between self-control, thinking quality and mathematical academic achievement, 197 senior school students were asked to complete questionnaires called "self-control ability on mathematics for middle school students" and "thinking quality for senior school students." The results were as follows: (1) There was strongly positive relevance between self-control ability, thinking quality and mathematical academic achievement. (2) A model was presented in which self-control ability had a direct impact on mathematical academic achievement, meanwhile had indirectly influenced mathematical academic achievement by thinking quality which acted as the intermediate variable. Thinking quality had a direct impact on mathematical academic achievement, too. (3) There's no significant difference between the two groups of boys and girls on the structural weights.

한국의 국제수학올림피아드 참가의 성과 및 개선점 논의 (Review of participations of the Korean National Team in the International Mathematical Olympiad and discussions for improvements)

  • 이승훈
    • 한국수학사학회지
    • /
    • 제28권5호
    • /
    • pp.279-297
    • /
    • 2015
  • In the present study, we review the history of the participations of the Korean national team in the International Mathematical Olympiad for 28 years. We identifiy three major events that highlighted the development of the Korean Mathematical Olympiad program: The first participation in the International Mathematical Olympiad, hosting of the International Mathematical Olympiad, and winning the first place in the International Mathematical Olympiad. We also propose some recommendations for next steps to facilitate the development of Mathematical Olympiad in Korea.

수학적 모델링과 수학화 및 문제해결 비교 분석 (Comparison and Analysis among Mathematical Modeling, Mathematization, and Problem Solving)

  • 김인경
    • 한국수학사학회지
    • /
    • 제25권2호
    • /
    • pp.71-95
    • /
    • 2012
  • 현재 수학교육에서 큰 흐름을 이루고 있는 수학적 모델링, 수학화, 문제해결을 살펴보았다. 먼저, 1990년대 이후 수학교육에서 활발히 연구되기 시작한 수학적 모델과 수학적 모델링을 살펴보았다. 그리고 1970년대 Freudenthal가 주장한 수학화를 분석하여 수학적 모델링과 비교분석하였다. 또한, 1980년대 이후 수학교육의 중심이 된 문제해결도 살펴보고, 이를 수학적 모델링과 비교분석하였다.

Lakatos의 증명 및 반박과 학생들의 수학적 사고의 비교에 관한 연구 (Research about comparison on Lakatos' proofs and refutations with students' mathematical thinking)

  • 유현승;이병수
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제22권3호
    • /
    • pp.383-397
    • /
    • 2008
  • 문제 해결에 있어서 수학적 사고의 필요성은 절대적이다. 이 논문에서는 먼저 기존의 수학적 사고에 대해 확인하고 Lakatos의 증명과 반박의 과정을 통한 수학적 예에서 학생들이 어떻게 수학적 사고를 형성하는지를 살펴본다.

  • PDF

수학교육과 수학적 창의성 (Mathematical Creativity in Mathematics Education)

  • 황우형;최계현;김경미;이명희
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제20권4호
    • /
    • pp.561-574
    • /
    • 2006
  • Mathematical creativity has been confused with general creativity or mathematical problem solving ability in many studies. Also, it is considered as a special talent that only a few mathematicians and gifted students could possess. However, this paper revisited the mathematical creativity from a mathematics educator's point of view and attempted to redefine its definition. This paper proposes a model of creativity in school mathematics. It also proposes that the basis for mathematical creativity is in the understanding of basic mathematical concept and structure.

  • PDF

수학적 사고 과정 관련의 평가 요소 탐색 (Evaluation Factor related to Thinking Skills and Strategies based on Mathematical Thinking Process)

  • 황혜정
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제40권2호
    • /
    • pp.253-263
    • /
    • 2001
  • Developing mathematical thinking skills is one of the most important goals of school mathematics. In particular, recent performance based on assessment has focused on the teaching and learning environment in school, emphasizing student's self construction of their learning and its process. Because of this reason, people related to mathematics education including math teachers are taught to recognize the fact that the degree of students'acquisition of mathematical thinking skills and strategies(for example, inductive and deductive thinking, critical thinking, creative thinking) should be estimated formally in math class. However, due to the lack of an evaluation tool for estimating the degree of their thinking skills, efforts at evaluating student's degree of mathematics thinking skills and strategy acquisition failed. Therefore, in this paper, mathematical thinking was studied, and using the results of study as the fundamental basis, mathematical thinking process model was developed according to three types of mathematical thinking - fundamental thinking skill, developing thinking skill, and advanced thinking strategies. Finally, based on the model, evaluation factors related to essential thinking skills such as analogy, deductive thinking, generalization, creative thinking requested in the situation of solving mathematical problems were developed.

  • PDF

수학적 모델링 맵으로 살펴본 수학적 모델링에 관한 국내 연구 동향 (Trends in Korea research on mathematical modeling investigated by mathematical modeling map)

  • 최경아
    • 한국학교수학회논문집
    • /
    • 제21권4호
    • /
    • pp.327-342
    • /
    • 2018
  • 본 연구의 목적은 관점, 영역, 수준으로 구성된 삼차원 수학적 모델링 맵을 활용하여 수학적 모델링에 관한 국내 연구를 되돌아보고, 향후 수학적 모델링 연구에 대한 시사점을 주는 데 있다. 그 결과, 수학적 모델링에 관한 국내 연구는 응용 관점, 개념과 교실 영역, 중등학교 수준에 집중되어 있었고, 앞으로 개념 형성 관점, 시스템 영역, 대학교 및 교사(교육) 수준에서의 다양한 연구가 요구됨을 알 수 있었다.

중등수학영재의 수학적 창의성에 대한 고찰 (A Study on Mathematical Creativity of Middle School Mathematical Gifted Students)

  • 김동화;김영아;강주영
    • East Asian mathematical journal
    • /
    • 제34권4호
    • /
    • pp.429-449
    • /
    • 2018
  • The purpose of this study is to investigate how the mathematical creativity of middle school mathematical gifted students is represented through the process of problem posing activities. For this goal, they were asked to pose real-world problems similar to the tasks which had been solved together in advance. This study demonstrated that just 2 of 15 pupils showed mathematical giftedness as well as mathematical creativity. And selecting mathematically creative and gifted pupils through creative problem-solving test consisting of problem solving tasks should be conducted very carefully to prevent missing excellent candidates. A couple of pupils who have been exerting their efforts in getting private tutoring seemed not overcoming algorithmic fixation and showed negative attitude in finding new problems and divergent approaches or solutions, though they showed excellence in solving typical mathematics problems. Thus, we conclude that it is necessary to incorporate problem posing tasks as well as multiple solution tasks into both screening process of gifted pupils and mathematics gifted classes for effective assessing and fostering mathematical creativity.

의사소통 중심의 수학사 기반 수업이 초등학생의 수학적 의사소통과 태도에 미치는 영향 (The Influence of Mathematical History-Based Mathematics Teaching on Mathematical Communication and Attitudes of Elementary Students)

  • 허도하;오영열
    • 한국초등수학교육학회지
    • /
    • 제15권2호
    • /
    • pp.463-485
    • /
    • 2011
  • 본 연구는 초등학교 수학에 적용 가능한 수학사를 추출하고 이를 효과적으로 활용할 수 있는 수업 모형을 개발하여, 수학사를 활용하는 수업 이 학생들의 수학적 의사소통과 수학적 태도에 어떠한 영향을 미치는지 알아보았다. 이를 위해 실험집단에는 수학사를 활용한 수업을, 비교집단에는 교과서를 활용한 교사 중심적인 수업을 실시하였으며, 연구 중에 수집된 자료는 양적 분석과 질적 분석 방법을 병행하여 분석하였다. 그 결과 첫째, 의사소통 중심의 수학사 기반 수학 수업은 학생들의 의사소통 참여도를 향상시키는 데에 도움을 주었으며, 둘째, 학생들이 수학적 논리를 가지고 자신의 의견을 상대방에게 정당화하게 하였다. 그러나, 수학사를 활용한 수학 수업이 학생들의 수학적 태도에 통계적으로 유의미한 차이를 가져왔다고 볼수는 없으나, 긍정 적 변화의 조짐을 질적으로 관찰할 수 있었다.

  • PDF