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The purpose of this paper is to contribute to the dialogue about the notion of advanced
mathematical thinking by offering an alternative characterization for this idea, namely advancing
mathematical activity. We use the term advancing (versus advanced) because we emphasize the
progression and evolution of students' reasoning in relation to their previous activity. We also use
the term activity, rather than thinking. This shift in language reflects our characterization of
progression in mathematical thinking as acts of participation in a variety of different socially or
culturally situated mathematical practices. We emphasize for these practices the changing nature of
student’ mathematical activity and frame the process of progression in terms of multiple layers of
horizontal and vertical mathematizing.

Mathematics education research dealing with the leaming and teaching of undergraduate
mathematics is an emerging area of interest. Some have considered the area of undergraduate
mathematics education to be different from school mathematics education because there are more
opportunities for what might be thought of as "advanced mathematical thinking.”"What constitutes
advanced mathematical thinking, however, continues to be debated. Does this phrase mean
thinking about advanced topics? Does it mean thinking in “advanced” ways about any
mathematics? Might it mean something different?

Tall (1992) describes advanced mathematical thinking as composed of two components the
specification of concepts by precise mathematical definitions (including statements of axioms) and
the logical deductions of theorems based upon them. Tall goes on to say, "In taking students
through the transition to advanced mathematical thinking, we should realize that the formalizing
and systematizing of the mathematics is the final stage of mathematical thinking, not the total
activity”(p. 508-509, emphasis added). We agree with Tall on this point, and in our research we
seek ways to characterize students’ total activity as they progress in their mathematical
sophistication.
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The purpose of this paper is to contribute to the dialogue about the notion of advanced
mathematical thinking. In particular, we offer an alterative characterization of advanced
mathematical thinking that focuses on important mathematical practices and qualitatively different
types of activities within these practices. Our characterization of advanced mathematical thinking,
which we refer to as advancing mathematical activity, is not limited to specific grade or content
levels.

We use the term advancing rather than advanced because we address the process of students’
total activity rather than just the "final stage” referred to by Tall. This shift from characterizing
"advanced” as a final state to characterizing advanced as a relative term illuminates aspects of
students’ progression and evolution of reasoning, in relation to their previous activity. Our
emphasis on advancing, rather than on advanced, also limits the evaluative nature that often
comes with the term advanced. In particular, we refrain from characterizing individuals as
"advanced” or "not advanced'for, in our opinion, such characterizations minimize the potentials for
all learners, not just the few in upper level undergraduate courses, to progress in their
mathematical sophistication.

We also use the term activity, rather than thinking. This shift in language reflects our
characterization of progression in mathematical thinking as acts of participation in a variety of
different socially or culturally situated mathematical practices (Lave & Wenger, 1991; Sfard, 1998;
Wenger, 1998). Students’ symbolizing, algorithmatizing, and defining activities are three examples
of such social or cultural practices. These three mathematical practices are not meant to be
exhaustive, but represent a useful set of core practices that cut across all mathematical domains.
Another significant mathematical practice, one that we leave to later analysis, is justifying.

The term thinking is often used in describing mathematical growth to reflect a psychological
point of view. While this focus on thinking often provides useful insights into inferred cognitive
structures, it can result in neglecting the types of mathematical activities and ways of
participating in these activ_ities that foster and promote progressively sophisticated mathematical
reasoning. Because we view learning as acts of participation in different mathematical practices,
we intentionally use the term activity rather than thinking. Our use of the term activity, however,
does not reflect a dichotomy between thinking and doing but rather intends to encompass both
doing and thinking. We view the relationship between doing and thinking to be reflexive in
nature, not dichotomous. As students engage in particular activities, they not only enact their
understandings but also enlarge their thinking and ways of reasoning in the process. This is
what we mean when we say that the students’ symbolizing, algorithmatizing, and defining
activities encompass both doing and thinking.
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To summarize, our use of the term activityreflects a view that mathematics is first and
foremost a human activity (Freudenthal, 1991), in which doing and thinking are dualities situated
within particular social or cultural practices. As argued by Cobb & Bowers (1999), the notion of
participating in practices is not restricted to face-to—face interactions with others. Instead, all
individual actions are viewed as elements or aspects of an encompassing system of social
practices and individuals are viewed as participatingin social practices, even when they act in
physical isolation from others. (p. 5)

In building on the work of theorists such as Cobb and Bowers (1999) and Lave and Wenger
(1991), our efforts in this paper are in line with Tall’s (1991) statement, "in trying to formulate
helpful ways of looking at advanced mathematical thinking, it is important that we take a broad
view and try to see the illumination that various theories can bring”(p. 21). In the sections that
follow, we first develop the notion of advancing mathematical activity as acts of participation in
different mathematical practices by adapting and modifying Treffers” (1987) constructs of
horizontal and vertical mathematizing. We then describe the research projects from which we
draw examples. Next, we illustrate and clarify our constructs of horizontal and vertical
mathematizing with examples of students’symbolizing, algorithmatizing, and defining activities. In
the final section we discuss the links and parallels between the three practices with respect to
horizontal and vertical mathematizing, and conclude with some remarks about the utility of these
notions for improving mathematics education.

Advancing Mathematical Activity

Mathematical learning means participating in different types of mathematical practices. In order
to explicate important varations within each practice, we modify Treffers’(1987) idea of
progressive mathematizing. Treffers describes progressive mathematizing in terms of a sequence
of two types of mathematical activity-horizontal mathematizing and vertical mathematizing. We
emphasize that, like doing and thinking, we view horizontal and vertical mathematizing as
reflexively related, not as dichotomies. As we make clear in the discussion that follows, the
distinction between horizontal and vertical activity is a relative one, one that cannot be made
without the other. This reflexivity is a strength because it enables us to make comparisons about
the nature of students’ activity and it provides us with a language in which to talk about the
process by which students develop new views and sensitivities.

According to Treffers, horizontal mathematizing is described as "transforming a problem field
into a mathematical problem” (p. 247). This notion of horizontal mathematizing suggests that, for
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Treffers, what constitutes a problem field is non-mathematical (i.e, some context related to a
real-world situation). We treat horizontal mathematizing more broadly to include problem fields or
situations that are, from the perspective of those involved, already mathematical in nature. In our
view, what constitutes a problem field or problem situation depends on the background,
experiences, and goals of those engaged in the mathematical activity. Thus, what constitutes a
problem situation for leamers in a real analysis course is potentially different from that for
learners in an elementary school classroom. Our stance on the relativity of what might be taken
as the context for horizontal mathematizing is certainly not a new idea. Dewey (1910/1991)
posited that the distinction between what is concrete and what is abstract is relative to the
intellectual progress of the person. Indeed, we find the notion of a "final stage” unhelpful in
thinking about students’ mathematical development because no matter what the intellectual
progress, there is always room for growth.

In our broadening of what is meant by a problem field, horizontal mathematizingrefers to
formulating a problem situation in such a way that it is amenable to further mathematical
analysis. Thus, horizontal mathematizing might include, but not be limited to, activities such as
experimenting, pattern snooping, classifying, conjecturing, and organizing.

Given the situatedness of horizontal -mathematizing, vertical mathematizing is then only
understood in relation to students’ current activity. Vertical mathematizingconsists of those
activities that are grounded in and built on horizontal activities. Thus, vertical mathematizing
might include activities such as reasoning about abstract structures, generalizing, and formalizing.
Students’ new resulting mathematical realities may then be the context for further horizontal
mathematizing. To clarify, students'vertical mathematizing activities serve the purpose of creating,
for students, new mathematical realities. These new mathematical realities can then be the
context or ground for further horizontal and/or vertical mathematizing activities, producing a
sequence or chain of progressive mathematizions.

Thus, progressive mathematizing can involve multiple layers of horizontal and vertical
mathematizing activities. In the simplest sense, progressive mathematizing refers to a shift or
movement from horizontal activities to vertical activities. This shift is not necessarly
uni-directional, as vertical activities often “fold back” (Pirie & Kieren, 1994) to horizontal
activities. In more complex cases, progressive mathematizing refers to the fact that students’
newly formed mathematical realities, resulting from previous mathematizing, can be the context
for additional horizontal and/or vertical mathematizing. This more complex aspect of progressive
mathematizing is touched on in the algorithmatizing and defining sections.
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Another, and perhaps more significant modification we make to the ideas of horizontal and
vertical mathematizing, and one that has been implicit in the preceding discussion and which we
now make explicit, is framing progressive mathematizing not in terms of particular ideas such as
fractions or long division, as Treffers (1987) does,but in terms of socially and culturally situated
mathematical practices. In our view, the mathematical practices of symbolizing, algorithmatizing,
and defining are mechanisms by which particular ideas such as fraction, long division, solutions
to differential equations, or triangle evolve. This is a non-trivial modification because it calls for
attention to the types of activities in which learners engage for the purpose of building new
mathematics ideas and methods for solving problems.

In summary, the notion of advancing mathematical activity is the building and progression of
practices. Participation in these practices, and changes in these practices, is synonymous with
leaming (Lave & Wenger, 1991; Cobb & Bowers, 1999). The process by which these practices
build and progress is referred to as progressive mathematization, with its multiple layers of
horizontal and vertical types of activity. As alluded to earlier, the separation of mathematical
activity into horizontal and vertical aspects is somewhat artificial, as in reality the two activities
are closely related. However, for the purposes of clarifying the nature of advancing mathematical
activity and its progression, this distinction proves useful. As described in the next section, our
tightly integrated research, teaching, and instructional design work has provided a unique setting
from which the construct of advancing mathematical activity has grown.

Research Setting

We have emphasized in our classroom-based research in undergraduate mathematics education
the idea of progressive mathematizing and we therefore draw on examples from different
classroom teaching experiments (two in differential equations at a mid-sized public university and
one in Euclidean and non-Euclidean geometry at a large public university!) to illustrate the
notion of advancing mathematical activity. The methodological approach we took in these research
efforts is that of the classroom teaching experiment, as described by Cobb (2000). Data consisted
of videorecordings of each class session, videorecorded interviews with individual students, copies

1) The researchers who participated in some or all of the differential equations teaching experiments were
Karen King, Chris Rasmussen, Michelle Stephan, and Erna Yackel. The researchers that participated inthe
geometry teaching experiment were Barbara Edwards, Libby Krussel, Chris Rasmussen, and Michelle
Zandieh,
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of students’written work, and records of project meetings. These classroom teaching experiments
had two overarching goals. One goal was to develop paradigmatic case studies of the processes
by which students develop particular mathematical ideas in relation to the norms and practices
established in their classroom communities. A second related goal was an interest in examining
the viability of adapting to the university setting instructional and curriculum design approaches
that have been effective for promoting student leaming of K-12 mathematics.

In all of these teaching experiments we paid particular attention to the social aspects of the
classroom, using Cobb and Yackel's (1996) interpretive framework for coordinating sociological
and psychological points of view. Various sociological aspects of this research, including
classroom norms pertaining to explanation and classroom mathematical practices, are reported
elsewhere (see Rasmussen, Yackel, & King, 2003; Stephan & Rasmussen, 2002, and Yackel,
Rasmussen, & King, 2000). To a large extent in the differential equations teaching experiment
and to a smaller extent in the geometry teaching experiment, the research team’s instructional
design efforts were grounded in the instructional design theory of Realistic Mathematics
Education (Freudenthal, 1973; Gravemeijer, 1994, 1999). The interpretive framework for making
sense of the complexity of the classroom leamning environment and the instructional design theory
of Realistic Mathematics Education were critical to the success of these classroom teaching
experiments.

We use examples from our teaching experiments to illustrate and clarify our theoretical
development of the notion of advancing mathematical activity, bringing to the fore aspects of
horizontal and vertical mathematizing activities within the practices of symbolizing,
algorithmatizing, and defining. Rather than primarily viewing mathematics as a set and
pre-organized discipline that is carefully articulated to students, these three mathematical practices
constitute a key collection of activities through which learners can create, organize, and

systematize mathematics.
Symbolizing

In order to better understand how symbolizing can beviewed as a mathematical practice with
horizontal and vertical mathematizing aspects, it is useful to first consider some general orienting
comments on the nature of symbolizing and symbols. The perspective we take toward
symbolizing both departs from and connects with the way in which Herscovics (1996) described
symbolizing (Rasmussen, 1999). Herscovics wrote that symbolizing provides the means to detach
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a concept from its concrete embodiments. However, the introduction of symbols can be premature
if an adequate intuitive basis is lacking... Thus mathematical notation can be meaningful only
when it is used in the process of mathematizing previously acquired informal knowledge. (p. 358,
emphasis added)

We connect with Herscovics’ suggestion that symbolizing is a key aspect of mathematizing and
we elaborate horizontal and vertical aspects of such activity. However, instead of viewing
symbolizing as a means to "detach a concept from its concrete embodiments,"which is reminiscent
of perspectives that treat one's reasoning about mathematical concepts and their representations as
separate, distinct entities, we view students’ conceptual development and the activity of
symbolizing as reflexively related (Meira, 1995, Gravemeijer, Cobb, Bowers & Whitenack, 2000). In
this approach, “it is while actually engaging in the activity of symbolizing that symbolizations
emerge and develop meaning within the social setting of the classroom” (Gravemeijer, et. al., 2000,
p. 235-236). From this point of view, the need for notation and symbolism arises in part as a
means to record reasoning and serves as an impetus to further students'mathematical development.
In this way, symbolizing is less a process of detachment and more a process of creation and
reinvention. Further mathematizing activity and powerful use of conventional symbols emerge from
and are grounded in students’ previous symbolizing activities?),

In the following paragraphs excerpts taken from a classroom teaching experiment in a
university level differential equations course are used to illustrate aspects of advancing
mathematical activity within the practice of symbolizing. In these examples, the symbolizing
activities in which students’ engage shift from recording and communicating their thinking to
using their symbolizations as inputs for further mathematical reasoning and conceptualization.
This progression in symbolizing is reflective of the horzontal to vertical mathematizing
progression and exemplifies our notion of advancing mathematical activity.

Symbolizing: Horizontal Mathematizing

In the first example students were analyzing solution functions to the differential equation

% =0.6P(1—TP§). Their primary tool at this point was the slope field, such as the one

2) This perspective on symbolizing is compatible with Nemirovsky's (1994) notion of symbol-use, which
refers to the actual use of mathematical symbols by someone, for a purpose, and as part of a chain of
meaningful events.
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shown in Figure la. Part of the discussion between the teacher and students focused on the
possibility of a particular solution function graph, such as that shown in Figure 1b.

Pt) =12.3

(a) (b) ' (0
<Figure 1> Slope field for dP/dt = 0.6P(1 - P/12.3)

Students reasoned that such a solution function was not possible. The following reasoning was
typical of the explanations offered by them.

Joe: T don't think the function would oscillate because if it did then after the function was
bigger than 12.3 the slope would still be positive, but from the differential equation and
the slope field I know that the slopes are negative when you're above 12.3. So that can't
happen.

After further discussion and elaboration, what experts in differential equations understand to be

a (partial) phase line was intentionally introduced by the teacher to record students’reasoning, as
shown in Figure 1c. From the students'perspective, what the teacher sketched did not yet have a
name and was simply a notational device that was consistent with their mathematical reasoning
about the behavior of solution functions forthe given differential equation. Thus, the symbolizing
activity, which was initiated on the part of the teacher in response to student reasoning, is
horizontal in nature since this activity seeks to formulate symbolically the given problem situation
and students’ mathematical reasoning within this situation.

The next example we discuss is a problem given to students on an exam. The task (shown in
Figure 2) was a novel one for students, as they had not previously experienced problems of this
form. Thus, the work of a student named Kevin3 that we provide and the symbolizing that this
student used are unlikely to be the result of a memorized procedure. This example is different
from the previous example two ways. First, the phase line is now a student record rather than a
teacher record, indicating ownership of the inscription. Second, the phase line is used to

3) All names are pseudonyms.
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communicate the long-term behavior of several solution functions, rather that just one solution
function. The use of the phase line to communicate the behavior of many solution functions (e,
the structure of the solution space) is important because it provides the background for vertical
mathematizing in which students use the phase line to infer changes to the structure of the
solutton space.

The task was to determine the long-term value of a population for various initial populations
given a particular differential equation. The novel aspect of the task was that students were
provided only with a graph of the differential equation, rather than the equation itself. This
circumvented the direct use of a slope field to symbolize and/or reason about the situation and
provided an opportunity for them to symbolize (if they so chose) the situation in ways
meaningful to them.

Suppose a population of Nomads is modeled by the differential equation % =AN). The

graph of dN/dt is shown below (CAUTION: this is NOT a graph of a solution function, it is a°

graph of the right-hand side of the autonomous differential equation)
f(N)

2 SN,

Graph of fIN) vs. N
<Figure 2> Student response on novel tas

For the following values of the initial population, what is the long-term value of the
population? Be sure to briefly explain your reasoning.

i Mo)=2, (i) M0)=3, (i) M0)=4, (@(v) M0)=7

As shown in Figure 3, Kevin began his response by interpreting the given information. For
example, he wrote, "when the population of nomads is less than 3, the rate of change of nomads
with respect to time will decrease [sic, is negative] until they become extinct” He made similar
statements about other ranges for the initial population and then made specific conclusions about
the long-term value of the population for specific initial populations.



18 Chris Rasmussen - Michelle Zandieh - Karen King - Anne Teppo

I ot .
Nom «d ,4!;«3.:«1 4 Yo graph ) whea &,,(,.,F;"M'm_' oF poniads 1§ legg finn B fhe Foie of
P’/’ldg‘ﬁ slipigr of vatad vofr |t 4L widt Jécedale, undif oy betome exhdoh  TE
Al | e popu(ui'(uh‘% Romads (¥ pelween 3 and ) W P2l oF eXange oF worradS
witt rospectde hudu ,,,\C,@;w'n’ < Rudy Wiae Hoe popylatidn of nomedt ads
& Ageue (c‘_, LVER SIS chunge of st /a[vfafw?; Jrop's Fio0e aqd versce Hha
. bgher & popolaten Jats o .
@ (1) So, acaediny ot tAddfh geaph, whan oo wiiah populehon of Homehs i
2, b calevF clonge OF n0Ma s wil] Hlways be regr g, ) (e5ul firg
) g;h'nché:l o At mou?h fosig g o ;e,w&vc@,a“im tate ey ae 0{“//”9 o//:,
- Y ! L
3 | () wWhen Yo apuialen o oigds 3, flocae of change i 200, and s homags
et Lmh.,x_uc 1o havl U popilang * 3 for edernity,
4 (_},;’)uéan_{h‘?é}’ﬂqiu‘n o nemgds s 4, g caleef ghiguge of e nomaed g pepvlation
Lo wilt always 1o yigensing | aad anouk(n? Yo efuilisriamgomt of a nemad
pepvlatiin oe g, .
N GV)TS faz 1;:.@-;&‘ popaladivn uf ',\opimit ;f ‘7’% ot of éwngt wifl dWLys bt&ci‘tﬂ,f""f ﬁ
[mgabin) Ond Jur popylates will “pprosch (7 [ ke ogitieesm Sotvbien )

—.

%ifm
i
3’_;:

<Figure 3> Student respons

As shown in Figure 3, Kevin used a phase line in his response. We interpret his use of a
phase line as a means to formulate, record, support, and communicate his reasoning. As such, we
view this as another example of horizontal mathematizing. We infer that, for this student, the
phaseline signified the evolution of all solution functions. In this way, the phase line began to
take on conceptual meaning independent of the population context. The next example is
illustrative of how symbols such as the phase line, which in this case originated as a means to
record student reasoning, can shift in function with students’ progressive mathematizing activities.

Symbolizing: Vertical Mathematizing

In the following example we illustrate a vertical mathematizing aspect of symbolizing. In
particular, we discuss how this particular student, Joaquin, used results of previous symbolizing
activities as input for other symbolizing activities in a dynamic and relational manner. Joaquin's
symbolizing activity built on the prior activity with the phase line to generate new mathematical
ideas. The vertical nature of this student’s work, when contrasted with the previous two

symbolizing examples, comes into full view.
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The problem, which appears in the textbook by Blanchard, Devaney, and Hall (1998), asks
students to identify the bifurcation values of a for the differential equation _th =y5—2'+a

and to describe the bifurcations that take place as e« increases. At the start of his response,
Joaquin noted that whenever the rate of change equation is negative, y{(t) will decrease and
whenever the rate of change equation is positive, y(t) will increase. This conclusion results in his
symbolizing four different regions as shown in Figure 4 where y(t) is either increasing or

decreasing.

<Figure 4> Student response on bifurcation task

Our interpretation of his reasoning is that he conceptualized the space of solution functions as
being partitioned into four regions separated by three equilibrium solution functions. His
references to y(t) and his informal use of notation signifying various solution functions y(t), as
shown in Figure 4, support this interpretation.

At this point, we characterize Joaquin’s symbolizing in Figure 4 as horizontal mathematizing
since the various representations he used serve to essentially formulate and communicate the
problem situation when @=0. Symbolizing is used to create a model-of the situation
(Gravemeijer, et. al. 2000; Rasmussen, 1999). As Joaquin varied @, he used these symbolizations
dynamically as input for further symbolizations. We take the latter part of his response as
characteristic of vertical mathematizing, which creates a model-for reasoning relationally.

More specifically, Joaquin varied the value of @, which he determined “will shift the graph up
or down along the dy/dt axis,” as shown in his sketch in Figure 5a. Joaquin then concluded that
“Qualitatively, there are five types possible.”
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<Figure 5> Student response on bifurcation task (continued from Figure 4)

He then found the specific values of that result in a bifurcation and made a differentiation
between these types. The student symbolized the different types with five different phase lines,
as shown in Figure 5b. Joaquin’s use of the word "type” is significant for it suggests that for
him, each phase line signified all of the solution functions corresponding to each particular value
of a. Moreover, each of the five different phase lines is qualitatively different. For example, the
first phase line in Figure 5b where a < 0 consists of three different regions separated by two
equilibrium solutions. The second phase line where a=0 consists of four different regions
separated by three equilibrium solutions, and so on. Joaquin then explained how the different
phase lines relate to each other and how the equilibria change dynamically as @ changes. It is
in this sense, as we said earlier, that Joaquin's symbolizing was relational in manner. For
example, he stated that “Taking « smaller from graph C (when 0 <a < 1.185), ¢, and ¢,
spread apart as &, and b, approach each other” (where ¢;, ¢ &, and b, all refer to

equilibrium solutions). Joaquin's description of two equilibrium solutions spreading apart as «
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varies and the other two equilibrum solutions approaching each other strongly suggest that his
reasoning was based on a dynamic image of the phase line.

Moreover, Joaquin described elsewhere that he had an “epiphany” about how to use the graph
of the rate of change equation to figure out the exact bifurcation values. He symbolized, using a
sequence of static graphs, a dynamic image of the rate of change equation, as shown in Figure
5a, and he figured out for himself that the key was to determine where the extrema of dy/dt are
tangent to the y-axis. Joaquin's use of the word epiphany to describe his reasoning indicates that
his solution was not the result of a memorized procedure. It appears that Joaquin had developed
a highly integrated and complex way of reasoning about the space of solution functions to
differential equations and had developed effective and dynamic symbolizations to foster and
further his reasoning.

Taken together, these two examples illustrate how the practice of symbolizing can be viewed
as a process of advancing mathematical activity. Indicative of horizontal mathematizing, the phase
line first was used as a device to record and communicate student reasoning and conclusions. In
the latter part of the second example, this symbol became a tool for reasoning about the
generalized space of solution functions in a dynamic manner. Thus, in relation to students’
previous activity, this shift represents a form of vertical mathematizing that builds on and
extends previous horizontal mathematizing activity. A similar progression in activity from
horizontal mathematizing to vertical mathematizing is illustrated next for the practice of
algorithmatizing.

Algorithmatizing

Much of the traditional K-14 mathematics curriculum focuses on students’ acquisition of
algorithms to do particular types of problems. From double-digit subtraction with regrouping to
integration by parts, students’ responses across a variety of problems demonstrate that they have
acquired these algorithms and can reproduce the appropriate procedures when these procedures
are required. As Berlinski (2000) notes, "Algorithms are human artifacts” (p. xvii), the product of
human activity. Keeping this activity perspective of algorithms in the forefront suggests that
instead of focusing on the acquisition of these algorithms, we can characterize leaming to use
and understand algorithms as participating in the practice of algorithmatizing. By examining the
activity that leads to the creation and use of artifacts, as opposed to the acquisition of the
artifacts, we view mathematical leaming of and in reference to algorithms through a different
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lens. This is not to say that the acquisition metaphor (Sfard, 1998) is an unproductive way of
viewing the learning and use of algorithms, but rather our development is offered as an
opportunity to view algorithmic learning in a different way, which might further enlighten the
field. In particular, we will examine the use of horizontal and vertical mathematizing within the
practice of algorithmatizing.

To illustrate, we summarize an example from the differential equations classroom teaching
experiments. In a sequence of three activities, students worked on ways to estimate a solution to
a differential equation, leading toward implementing Euler’s method (Rasmussen & King, 2000). In
the following discussion of horizontal and vertical mathematizing, we use the term "procedure” to
indicate steps used to solve a particular task, and the term "algorithm” as a reference for a

generalized procedure that is effective across a wide range of tasks.
Algorithmatizing: Horizontal Mathematizing

Instruction prior to the introduction of the following task focused on helping students
conceptualize solutions to differenttal equations as functions, a notion that previous research had
identified as needing development (Rasmussen, 2001). Students had also worked to develop a
motivation for the reasonableness of a system ofdifferential equations as a model of disease
transmission in a closed system. After deriving this system of differential equations, the teacher
presented the following task, adapted from Callahan and Hoffman (1995).

Consider a measles epidemic in a schoolpopulation of 50,000 children. Suppose that 2100 people
are currently infected and 2500 have already recovered. Use the following rate of change
equations (time measured in days) to estimate the number of susceptible children (S), the number
of infected children (J), and the number of recovered children () tomorrow and the next day.
Organize your data in both tabular and graphical forms.

a5 _
P .00001S7
dar _ _ 1L
p7i .00001Sr- i
drR _ 1
ar ~ 1!
Students then eng grounded in a simpler situation involving fish in a lake. After an initial

discussion to establish the reasonableness of the differential equation _%It‘j =kP to model

unlimited growth of the fish, students engaged in the following task:
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One way to model the growth of fish in a pond is with the differential equation % = kP,

with time measured in years. Use this differential equation with a growth parameter £2=1 to
approximate the number of fish in the pond for the next several years if there are initially (a)
200 fish (b) 400 fish (c) 0 fish. Record your results in tabular and graphical forms.

Students were not supplied with any algorithms with which to approach the two problems.
Rather, they had to figure out ways to use the rate of change equations to inform them about
the quantities of interest. In this way, the mathematical idea of rate of change, together with the
specific infectious disease or population scenario, serve as the context or ground from which
students proceeded. This approach is in contrast to a traditional practice of first presenting the
complete algorithm, Euler's method, with the expectation that students acquire the method and
then apply it to a variety of problems. Because of the way in which the tasks were presented,
students engaged in the practice of creating procedures for solving particular problems.

Students’ efforts reflected their goals and purposes related to predicting future quantities such
as the number of infected people or the population of fish. In the service of carrying out these
goals, students enacted their understandings of rates of change to do calculations and created
tables and graphs to help organize the information to answer questions about population growth
or spread of disease. This particularity, the lack of generality of the students’ procedures outside
of the problem space they were given, is a characteristic of horizontal mathematizing, and forms
a basis for a later shift to vertical mathematizing. With rate of change and the context situation
as the ground for horizontally mathematizing the problem to develop a procedure, the students
had a basis for developing algorithms, which represents a progression or advancement of their
mathematical activity.

Algorithmatizing: Vertical Mathematizing

The final task in this sequence asked students to come up with a description (in words and
equations) that might help another math or engineering student understand how to approximate
the future number of fish ina pond with the differential equation dP/dt = f{P), for some unknown
expression fiP). This task, of developing an algorithm, engaged students in the activity of
reflecting on and generalizing their previous work. In this case, students began to consider
situations in which the time increment need not be one unit and for a variety of types of
functions f(P). The procedure needed to be effective across these different situations, and not for
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a particular differential equation, initial condition, or increment of time. Thus, using their previous
activity, students engaged in vertical mathematizing, allowing them to develop generalized formal
algorithms.

The practice of developing an algorithm out of several experiences with particular cases
represents a vertical mathematizing aspect of algorithmatizing. However, even the above task is
set within the particular context of population growth. To move further along the mathematizing
continuum, students may be given the following problem:

Come up with a description(in words and equations) that might help another math or
engineering student understand how to approximate a future value of the function y(f) with the
differential equation dy/dt = fit, y).

This task does not refer explicitly to y as a function describing a particular quantity of
interest, nor is the differential equation autonomous?. Thus the task is intended to foster a
further move toward generality.

The algorithm that students develop can then be the ground for further horizontal
mathematizing. This happens when, for example, students are presented with particular situations
in which they compare an exact solution to the approximate solution generated by their algorithm
and they find that their algorithm does not provide reliable long-term predictions. This typically
results in students creating explanations for why their algorithm behaves in the way it does in
this particular case (horizontal mathematizing). In tumn, such activity ultimately leads to their
developing a better algorithm useful for all differential equations (vertical mathematizing). As
this brief discussion illustrates, the practice of algorithmatizing, like symbolizing and defining, can
often consist of more than one layer of horizontal and vertical mathematizing.

The mathematizing progression in this example is paradigmatic of the way in which
mathematical activity continues to advance relative to students’ previous mathematical activity.
Students horizontally mathematized by beginning with a particular problem for which they
developed a particular solution procedure. They then developed a generalized algorithm by
extending, or vertically mathematizing, their previous activity with this procedure. These
algorithms may then become the substance for further horizontal and vertical mathematizing
activities. While this example focuses on collegiate level mathematics, the same ideas can be
useful for elementary and secondary school mathematics. (See Campbell, Rowan & Suarez (1998)
for an example of algorithmatizing in the early grades.)

4) An autonomous differential equation, dy/dr, is one that depends only on y.
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Defining

Similar to symbolizing and algorithmatizing, the practice of defining can function both as an
organizing activity (horizontal mathematizing) and as a means for generalizing, formalizing or
creating a new mathematical reality (vertical mathematizing). Creating and using mathematical
definitions, versus "everyday definitions,”is an essential and often difficult activity for students,
even those in upper level courses such as real analysis (Edwards & Ward, in press). Freudenthal
(1973) distinguishesbetween two different types of defining activities in mathematics, descriptive
and constructive. Descriptive defining "outlines a known object by singling out a few
characteristic properties,” whereas in constructive defining a person “models new objects out of
familiar ones” (p. 457). We will use this distinction to help us elaborate horizontal and vertical
mathematizing in the domain of defining.

Defining: Horizontal Mathematizing

Descriptive defining is a type of organizing activity (e, it is an example of horizontal
mathematizing). In a geometry classroom teaching experiment involving undergraduate
mathematics, mathematics education, and computer science majors, we asked students to define a
number of geometric concepts for which they already had a number of previous experiences in
earlier mathematics courses. One of these was triangle. The small group and whole class
discussions of possible definitions included arguments over whether the suggested definitions
separated examples from non-examples, whether trivial or extreme examples of triangles should
be included, whether a suggested definition was as efficient as it could have been (e, did it
include redundant characteristics? Should it?), and whether or not the suggested definition
included terms which themselves should be defined before their use would be allowed.

These discussions helped clarify what a triangle should be and what criteria were necessary
and sufficient to describe such a figure. This type of organizing and clarifying is consistent with
what we term as horizontal mathematizing®. As we illustrate in the next section, this horizontal

5) The activity can be also analyzed from another perspective. Students were implicitly developing criteria
for what constitutes a "definition.” Thus, they are simultaneously engaged in horizontally mathematizing
the process of defining as they create a concept definition specifically for “triangle.” Edwards (1999)
elaborates on this notion by analyzing the processes by which students create a concept image (Tall &
Vinner, 1981) for mathematical definition.
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mathematizing activity, which in this case can be thought of as descriptive defining, served as
the ground or context for activities we characterize as vertical mathematizing.

Defining: Vertical Mathematizing

In contrast to descriptive defining, which singles out characteristic properties of a known
object, constructive defining creates new objects by building on and extending these known
objects. In thesame geometry teaching experiment, we invited students to interpret their planar
triangle definition as a definition for triangle on a sphere. Students quickly realized that the only
technical change needed was to interpret any mention of straight line inthe planar definition as a
great circle on the sphere. However, the activity of defining did not stop with this seemingly
small change. Students elucidated the definition by creating numerous examples and arguing
about whether an example such as the quarter sphere should be called a trangle. (A quarter
sphere connects a pole and two antipodal equator points with great circles. Thus, the vertices are
colinear, but the area of the figure is positive, unlike when one takes three colinear points on a
plane.)

Students struggled to reconcile their planar images of triangle with the planar (now spherical)
definition of triangle and the spherical images of possible triangles that they began to generate.
This type of activity builds on the previous organizational activity, prompting generalization and
abstraction as students use their definition to "define”’and create this new concept for themselves
through the activity of examining examples. Such .defining activity begins to create a new
mathematical reality for students-one that consists of new geometric objects and new
mathematical relationships between these objects. Such generalizing and abstracting activity that
builds on previous mathematizing fits our view of vertical mathematizing. A quote from the
journal of a student named Peter captures this experience.

From the figure [they had] drawn, it didn’t seem like it was a figure at all, but in close
observation it was a triangle! Yes, a triangle. It was a triangle based on the definition we chose
in class. The definition of a triangle matched up with the figure. Though this was true, the
figure did not look like a triangle. I did not see the triangle until someone brought up that it was
a triangle by definition. Better yet, there were two triangles! Yes, the inside AND the outside
were both triangles.

Students continued generalizing and abstracting as they made conjectures (without prompting
from the teacher) about the properties of triangles on the sphere based on the examples that they
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generated. It is significant that students were generating conjectures about properties of spherical
triangles without prompting from the teacher because it suggests that these students were
pursuing their goals and purposes in relation to this new mathematical reality of the surface of
the sphere. Moreover, this conjecturing process no longer referred back to planar triangles and
continued to expand students’ notions of spherical triangle as we reflected in another quote from
Peter’s journal:

Another surprising observation was whenGroup 1 gathered information about trniangles on a
sphere and concluded that the maximum number of degrees that a triangle can have with respect
to its angles is 1080 [sic] degrees. These observations [have] changed my view on spheres. All
along I was thinking and limited to a 2-dimensional perspective.

As these quotes illustrate, in constructive defining the majority of the elaboration of a concept
lies beyond the initiation of the defining activity, beyond the writing or stating of the definition
for the first time. In contrast, in descriptive defining the elaboration of the concept occurs
primarily before the writing of the definition, hence writing or stating the definition occurs
toward the end of the defining activity and the actual agreement on a definition within a certain
social structure (e.g., the classroom) is the finishing touch to the defining activity.

The previous example illustrates how students may progress from horizontal to vertical
mathematizing by using the organizing activities of horizontal mathematizing as a basis for
vertical mathematizing. As illustrated next, such newly formed mathematical realities can become
the ground for further mathematizing activity. For example, when investigating whether the
condition that two spherical triangles having two sides and the included angle congruent
necessarily means that the triangles are congruent, students created a new class of spherical
triangles for which this theorem was true. They identified this new mathematical object as a
"small triangle” with definitions that varied from group to group. Creating a new class of
spherical triangles indicates that triangles on the sphere have become an object in their own
right, for students, and the creating of small triangles represents horizontal mathematizing of their
new world of spherical triangles. In addition, students considered the equivalence of these various
definitions of small triangles and used small triangles as links in chains of deductive reasoning.
These mathematizing activities are vertical in nature since they are more formal or abstract in
relation to the starting point of defining a triangle on a plane, as well as in relation to their
newly created realities of spherical triangles.

As this final example illustrates, advancing mathematical activity can involve more than one
layer of horizontal and vertical mathematizing. Students’ new mathematical realities (in this case,
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the world of spherical triangles) that resulted from their earlier mathematizing activities served as
the ground for further mathematizing, creating a progressive mathematizing chain or sequence.

Conclusion

In the previous examples we developed the idea of advancing mathematical activity by
focusing on the nature of students’ participation in mathematical practices,elaborating horizontal
and vertical mathematizing activities within the practices of symbolizing, algorithmatizing, and
defining. Setting horizontal and vertical mathematical activity in relief against each other provides
a way to characterize both the nature of students’ activity and the progression of this activity.
Horizontal and vertical mathematizing activities do not occur in isolation, but comprise a duality
referred to as progressive mathematizing. The nature of the activity changes as students shift
and slide between what we characterized as horizontal and vertical mathematizing. Horizontal
mathematizing capitalizes on students’ initial or informal ways of reasoning, with subsequent
activities grounded in and building on this work. Participating in the practices of symbolizing,
algorithmatizing, and defining facilitates progressive mathematization, generalizations, and the
development of new mathematical realities.

It is important to keep in mind that horizontal and vertical mathematizing are of equal value
and not intended to reflect some fundamental distinction in the quality or content of cognitive
structures (cf., Schwingendorf, Hawks, & Beineke, 1992). Thus, regardless of whether students
are learning about compactness or multiplication, the construct of advancing mathematical activity,
with its attention to horizontal and vertical mathematizing, is potentially useful for researchers
who want to document the development of different types of mathematical practices that emerge
in classrooms and for teachers and curriculum developers who want to plan for students’
mathematical growth. In particular, advancing mathematical activity via progressive
mathematization offers a framework to view two of the three key aspects of what Simon (1995)
refers to as a mathematical teaching cycle-the learning goals and a conjectured leaming process.

The emphasis on activity, which involves both doing and thinking, resonates with a view of
learning as participating in different practices that engage particular goals and purposes of those
involved. Essential to the classroom teaching experiments from which we developed the construct
of advancing mathematical activity was the fact that explicit attention was paid to explanation
and justification. In particular, it became normative for students to routinely explain their thinking
in whole class discussions, attempt to make sense of other students’thinking, and indicate
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agreement or disagreement with other students’ mathematical ideas, interpretations, and
conclusions. This provided an opportunity to gain insight into the changing nature of
mathematical practices, resulting in the development of the notion of advancing mathematical
activity.

At the beginning of the paper we characterized mathematical leaming as participating in
mathematical practices. While not exhaustive, symbolizing, algorithmatizing, and defining were
tendered as important examples of such practices. We redirected the discussion on the nature of
advanced mathematical thinking to that of advancing mathematical activity. We further put
forward the notion of progressive mathematization, composed of horizontal and vertical
mathematizing activities, as a means to develop the idea of advancing mathematical activity.

Next, we point to some links and parallels between the practices of symbolizing,
algorithmatizing, and defining with respect to horizontal and vertical mathematizing. In the case
of all three practices, an important commonality is the interplay between creating and using. The
functions that creating and using sergre in horizontal mathematizing, however, are different than
in vertical mathematizing. In the practice of symbolizing, horizontal mathematizing involved
creating a phase line as a record of student reasoning. In the example of algorithmatizing,
horizontal mathematizing resulted in creating a procedure to provide future population estimates.
In the defining example, creating definitions for planar triangle were an important part of the
horizontal mathematizing. Creating the phase line, the procedure, and the definition were done in
part to express, support, and communicate ideas that were more or less already familiar, ideas
that connected with students’ informal or current conceptions.

Further horizontal mathematizing involved using a phase line, using a procedure, and using a
definition of triangle. This use, however, remained within the particulars of the problem situation.
Using symbols, procedures, and definitions function differently in vertical mathematizing. Using
serves the purpose of creating new mathematical realities. The creating in vertical mathematizing
is therefore unlike the creating in horizontal mathematizing because, as we said earlier, creating
the phase line, the procedure, and the definition were done in part to express, support, and
communicate ideas that were more or less already familiar, as opposed to creating new
mathematical realities.

Using the phase line, the procedure, and the definition in vertical mathematizing promoted
movement from the particular to the more general and in some cases the more formal. In the
symbolizing example, students used the phase line to explore the impact of varying a parameter.
In the algorithmatizing example, students used their procedure for new and yet-to-be determined
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differential equations. In the defining example, students used their familiar definition on the not so
(mathematically) familiar setting of the sphere. As we illustrated, these uses fostered and
promoted the emergence of new mathematical realities for students.

Finally, to what extent might an instructional and curricular focus on advancing mathematical
activity help ease what is often seen as a difficult transition "from a position where concepts
have an intuitive basis founded on experience, to one where they are specified by formal
definitions and their properties reconstructed through logical deductions”(Tall, 1992, p. 495)? This
transition is indeed difficult when students’ intuitive basis founded on experience is an island
(Kaput, 1994) separated from their reasoning based on formal definitions and logical deductions.
In contrast to a separation of reasoning, the construct of advancing mathematical activity offers
teachers, instructional designers, and researchers a practice-oriented way to think about the
transition from informal to more formal mathematical reasoning.
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