• Title/Summary/Keyword: magnetron reactive sputtering

검색결과 370건 처리시간 0.025초

Cu 금속과 Si 기판 사이에서 확산방지막으로 사용하기 위한 Zr(Si)N 박막의 특성 (Characteristic of Zr(Si)N film as a diffusion barrier between Cu metal and Si substrate)

  • 김좌연;조병철;채상훈;김헌창;박경순
    • 한국결정성장학회지
    • /
    • 제12권6호
    • /
    • pp.283-287
    • /
    • 2002
  • 초고집적 반도체 회로에서 Cu를 배선으로 쓰이기 위한 Cu 금속과 Si 기판사이의 확산방지막으로써 Zr(Si)N 박막을 연구하였다. Zr(Si)N 박막증착은 DC magnetron sputter으로 $Ar/N_2$의 혼합 gas를 사용한 reactive sputtering 방법을 이용하였다. 상온에서 ZrN 박막 증착시 Ar gas와 NE gas 비율이 48 : 2일 때 가장 낮은 비저항값을 가졌으며, 증착시 기판의 온도의 증가에 따라서 비저항값이 낮아졌다. 비저항값이 감소된 ZrN 박막일수록 (002)면의 방향성을 갖는 결정이 성장되었다. ZrN 박막의 Cu 확산방지 특성은 ZrN 박막에 Si을 첨가함으로써 개선될 수 있으며 지나치게 첨가될 경우에는 오히려 확산방지 특성이 감소되었다. 접착력 특성에서는 ZrN에 Si의 함유량이 증가함에 파라 개선되었다. 증착막의 특성은 XRD, 광학 현미경, scretch tester 그리고 $\alpha$-step 등을 사용하여 분석하였다.

산소 유량비 변화에 따른 AlN 박막의 구조, 표면 및 광학적 특성 (Structural, Morphological, and Optical Properties of AlN Thin Films Subjected to Oxygen Flow Ratio)

  • 조신호;김문환
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.287-292
    • /
    • 2010
  • 산소 유량비 변화에 따른 라디오파 반응성 마그네트론 스퍼터링 방법으로 성장된 AlN 박막의 구조, 표면 및 광학적 특성을 조사하였다. AlN 박막은 기판 온도 $300^{\circ}C$에서 성장되었으며, 반응성 가스로 질소와 산소 가스를 사용하였다. 산소 유량비는 공급되는 질소와 산소 혼합 가스양에 대한 산소의 유량비로 선택하여 0%, 10%, 15%, 20%, 25%, 30%로 제어하였다. 성장된 AlN 박막의 구조, 표면과 광학적 특성은 각각 X-선 회절장치, 전자주사현미경과 자외선-가시광 분광기를 사용하여 조사하였다. 산소 유량비 10%로 증착된 AlN 박막은 350~1,100 nm 파장 영역에서 평균 91.3%의 투과율과 4.30 eV의 광학 밴드갭 에너지를 나타내었다. 실험 결과는 산소 유량비를 변화시킴으로써 AlN 박막을 선택적으로 성장시킬 수 있음을 제시한다.

반응성 스퍼터링 장치로 제작된 질화탄소막의 결정성 분석 (Crystalline Analysis of Carbon Nitride Films Deposited by Reactive Sputtering System)

  • 이지공;하세근;이성필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.164-167
    • /
    • 2003
  • Carbon nitride films with ${\beta}-C_3N_4$ crystals were grown by rf reactive magnetron sputtering system with negative DC bias. Chamber baking system to supply whole chamber with activation energy was used to reduce the contamination of H and O atoms. XRD peaks showed the existence of crystalline ${\beta}-C_3N_4$(200) and lonsdaleite structures. FTIR spectroscopy studies revealed that the film contain ${\alpha}-C_3N_4$ and ${\beta}-C_3N_4$ with $1011\;cm^{-1},\;1257\;cm^{-1}\;and\;1529\;cm^{-1}$ peaks. We could also find the grain growth of hexagonal structure from SEM photograph, which is coincident with the theoretical carbon nitride unit cell. ${\alpha}$-step was used to make the thickness profile of the grown films.

  • PDF

고정밀 저항용 질화탄탈 박막의 특성 (Characteristic of Tantalum Nitride Thin-films for High Precision Resistors)

  • 최성규;나경일;남효덕;정귀삼
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.537-540
    • /
    • 2001
  • This paper presents the characteristics of Ta-N thin-film for high precision resistors, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(4~16 %)$N_2$). Structural properties studied using X-ray diffraction(XRD) indicate the presence of TaN, $Ta_3N_5$ or a mixture of Ta-N phases in the films depending on the amount of nitrogen in the sputtering gas. The chemical composition are investigated by auger electro spectroscopy(AES). The optimized conditions of Ta-N thin-film resistors were deposited in 4 % $N_2$ gas flow ratio. Under optimum conditions, the Ta-N thin-film resistors are obtained a high resistivity, $\rho=305.7{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=-36 $ppm/^{\circ}C$.

  • PDF

스퍼터의 산소분압비율에 의존한 ITO/PET박막의 조절 (Control of ITO/PET Thin Films Depending on the Ratio of Oxygen Partial Pressure in Sputter)

  • 김현후;신재혁;신성호;박광자
    • 한국표면공학회지
    • /
    • 제32권6호
    • /
    • pp.671-676
    • /
    • 1999
  • ITO (indium tin oxide) thin films on PET (polyethylene terephthalate) substrate have been deposited by a dc reactive magnetron sputtering without heat treatments such as substrate heater and post heat treatment. Each sputtering parameter during the sputtering deposition is an important factor for the high quality of ITO thin films deposited on polymeric substrate. Particularly, the material, electrical and optical properties of as-deposited ITO oxide films are dominated by the ratio of oxygen partial pressure. As the experimental results, the excellent ITO films are prepared on PET substrate at the operating conditions as follows : operating pressure of 5 mTorr, target-substrate distance of 45mm, do power of 20~30W, and oxygen gas ratio of 10%. The optical transmittance is above 80% at 550 nm, and the sheet resistance and resistivity of films are 24 Ω/square and $1.5\times$10$^{-3}$ Ωcm, respectively.

  • PDF

Effects of Ru Co-Sputtering on the Properties of Porous Ni Thin Films

  • Kim, Woo-Sik;Choi, Sun-Hee;Lee, Hae-Weon;Kim, Joo-Sun
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.746-750
    • /
    • 2006
  • NiO films and Ru co-sputtered NiO films were deposited by reactive magnetron sputtering for micro-solid oxide fuel cell anode applications. The deposited films were reduced to form porous films. The reduction kinetics of the Ru doped NiO film was more sluggish than that of the NiO film, and the resulting microstructure of the former exhibited finer pore networks. The possibility of using the films for the anodes of single chamber micro-SOFCs was investigated using an air/fuel mixed environment. It was found that the abrupt increase in the resistance is suppressed in the Ru co-sputtered film, as compared to undoped film.

PDP용 MgO 박막의 스퍼터 연구 (Sputtering of Magnesium Oxide this film for Plasma Display Panel Application)

  • 최영욱;김지현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1732-1734
    • /
    • 2003
  • An MgO thin film sputtering system for the PDP (Plasma Display Panel) applications has been developed. This system was manufactured with a vertical In-Line type of 42 inch, which has the length of 520 mm and the width of 900 mm. A reactive magnetron discharge for this sputtering was generated using an unipolar pulsed power supply which has functions of constant voltage (Max. 500 V) and current (Max. 15 A) control, frequency of $10{\sim}100$ kHz and duty ratio of $10{\sim}60$ %. The experiment was conducted under various conditions : $3{\sim}10$ mTorr of pressure, the ratio of $O_2$/Ar = $0.1{\sim}0.5$, 50 % of duty and power of $0.5{\sim}1.7$ kW. From the experiment, the deposition rate of a static state and a moving state were measured to be about 45 nm/min and 6 nm m/min at the distance of 50 mm between the target and the substrate, respectively.

  • PDF

질소이온 빔 보조 마그네트론 스퍼터로 증착 된 AlN 박막의 물성연구 (A Study on the Properties of AlN Films Deposited with Nitrogen Ion Beam Assisted RF Magnetron Sputtering)

  • 허성보;이학민;정철우;최대한;이병훈;김민규;유용주;김대일
    • 열처리공학회지
    • /
    • 제24권2호
    • /
    • pp.77-81
    • /
    • 2011
  • Aluminum nitride (AlN) thin films were prepared by using nitrogen ion beam assisted reactive radio frequency (RF) magnetron sputtering on the glass substrates without intentional substrate heating. After deposition, the effect of nitrogen ion beam energy on the structural and optical properties of AlN films were investigated by x-ray diffraction (XRD), atomic force microscope (AFM) and UV-Vis. spectrophotometer, respectively. AlN films deposited with $N^+$ ion irradiation at 100 eV show the higher (002) peak intensity in XRD pattern than other films. It means that $N^+$ ion energy of 100 eV is the favorable condition for low temperature crystallization. AFM images also show that surface average roughness is increased from 1.5 to 9.6 nm with $N^+$ ion energy in this study. In an optical observation, AlN films which deposited by $N^+$ ion beam energy of 100 eV show the higher transmittance than that of the films prepared with the other $N^+$ ion beam conditions.

Mechanical and Chemical Characterization of NbNx Coatings Deposited by ICP Assisted DC Magnetron Sputtering

  • Jun, Shinhee;Kim, Junho;Kim, Sunkwang;You, Yong Zoo;Cha, Byungchul
    • 열처리공학회지
    • /
    • 제27권1호
    • /
    • pp.10-14
    • /
    • 2014
  • Niobium nitride coatings have many potential thin film applications due to their chemical inertness, good mechanical properties, temperature stability and superconducting properties. In this study, $NbN_x$ coatings were prepared by inductively coupled plasma (ICP) assisted DC magnetron sputtering method on the surface of AISI 304 austenitic stainless steels. Effects of target power were studied on mechanical and chemical properties of the coatings. The coating structure was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coating hardness was measured by micro-knoop hardness tester. The coating thickness was measured using a 3D profiler and wear characteristics were estimated using a ball-on-disk wear tester. The thickness of the $NbN_x$ coatings increased linearly from 300 nm to 2000 nm as the Nb target power increased, and it showed over $HK_{0.005}$ 4000 hardness above Nb target power of 300 W. Hexagonal ${\delta}^{\prime}$-NbN phase and cubic ${\delta}$-NbN phase were observed in the coating films and the hardness of the NbNx coatings was higher when these two peaks were mixed. The corrosion resistance increased with the increase of the Nb target power.

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.