Browse > Article
http://dx.doi.org/10.1016/j.net.2019.08.015

Development and testing of multicomponent fuel cladding with enhanced accidental performance  

Krejci, Jakub (Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering)
Kabatova, Jitka (UJP Praha a.s.)
Manoch, Frantisek (UJP Praha a.s.)
Koci, Jan (UJP Praha a.s.)
Cvrcek, Ladislav (Czech Technical University in Prague, Faculty of Mechanical Engineering)
Malek, Jaroslav (Czech Technical University in Prague, Faculty of Mechanical Engineering)
Krum, Stanislav (Czech Technical University in Prague, Faculty of Mechanical Engineering)
Sutta, Pavel (University of West Bohemia, New Technologies - Research Centre)
Bublikova, Petra (Research Centre Rez)
Halodova, Patricie (Research Centre Rez)
Namburi, Hygreeva Kiran (Research Centre Rez)
Sevecek, Martin (UJP Praha a.s.)
Publication Information
Nuclear Engineering and Technology / v.52, no.3, 2020 , pp. 597-609 More about this Journal
Abstract
Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.
Keywords
Accident tolerant fuels; Cladding; Physical vapour deposition; Chromium; CrN; Magnetron sputtering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Van Nieuwenhove, V. Andersson, J. Balak, B. Oberlander, In-pile testing of CrN, TiAlN, and AlCrN coatings on zircaloy cladding in the halden reactor, in: Zirconium in the Nuclear Industry: 18th International Symposium, ASTM International.
2 C. Meng, L. Yang, Y. Wu, J. Tan, W. Dang, X. He, X. Ma, Study of the oxidation behavior of CrN coating on zr alloy in air 515 354-369, URL, http://www.sciencedirect.com/science/article/pii/S0022311518310274.   DOI
3 J. Krejci, M. Sevecek, L. Cvrcek, Development of Chromium and Chromium Nitride Coated Cladding for VVER Reactors.
4 I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, 127 (2) 203-218, http://www.sciencedirect.com/science/article/pii/S0257897200005661.   DOI
5 G. Brauer, B. Szyszka, M. Vergohl, R. Bandorf, Magnetron sputtering - milestones of 30 years, 84 (12) 1354-1359, http://www.sciencedirect.com/science/article/pii/S0042207X10000163.   DOI
6 P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, 56 (3) 159-172, http://www.sciencedirect.com/science/article/pii/S0042207X9900189X.   DOI
7 J.A. Thornton, The microstructure of sputteredeposited coatings, 4 (6) 3059-3065, http://avs.scitation.org/doi/abs/10.1116/1.573628.   DOI
8 J. Bischoff, P. Blanpain, J. Brachet, C. Lorrette, A. Ambard, J. Strumpel, K. McKoy, Development of Fuels with Enhanced Accident Tolerance 22Bibtex: Bischoff2016development.
9 X. Wenxin, Y. Shihao, Reaction diffusion in chromium-zircaloy-2 system, URL, http://inis.iaea.org/Search/search.aspx?orig_q=RN:33019170.
10 K. KENG, M. Hamalainen, R. Luoma, A Thermodynamic Assessment of the Cr-Zr System 84 (1) 23-28, (bibtex*[publisher=Hanser]).
11 M. Steinbruck, M. Bottcher, Air oxidation of zircaloy-4, m5(R) and $ZIRLO^{TM}$ cladding alloys at high temperatures, 414 (2) 276-285, https://www.sciencedirect.com/science/article/pii/S0022311511003631.   DOI
12 E.J. Lahoda, P. Xu, Z. Karoutas, S. Ray, K. Sridharan, B. Maier, G. Johnson, Cold spray chromium coating for nuclear fuel rods, URL, http://patents.google.com/patent/US20180025793A1/en.
13 Y.-H. Koo, J.-H. Yang, J.-Y. Park, Y.-S. Yang, H.-K. Kim, W.-K. In, K.-W. Song, Status of Dual Cooled Annular Fuel Development in KAERI.
14 M. Sevecek, A. Gurgen, A. Seshadri, Y. Che, M. Wagih, B. Phillips, V. Champagne, K. Shirvan, Development of cr cold sprayecoated fuel cladding with enhanced accident tolerance, 50 (2) 229-236, http://www.sciencedirect.com/science/article/pii/S1738573317307283.   DOI
15 IAEA, Accident tolerant fuel concepts for light water reactors, URL, http://www-pub.iaea.org/books/IAEABooks/10972/Accident-Tolerant-Fuel-Concepts-for-Light-Water-Reactors.
16 J.-H. Park, H.-G. Kim, J.-y. Park, Y.-I. Jung, D.-J. Park, Y.-H. Koo, High temperature steam-oxidation behavior of arc ion plated cr coatings for accident tolerant fuel claddings 280 256-259. doi:10.1016/j.surfcoat.2015.09.022. URL//www.sciencedirect.com/science/article/pii/S0257897215302607   DOI
17 C. Tang, M. Stueber, H.J. Seifert, M. Steinbrueck, Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings, 35 (3) 141-165, https://www.degruyter.com/view/j/corrrev.2017.35.issue-3/corrrev-2017-0010/corrrev-2017-0010.xml.   DOI
18 I. Younker, M. Fratoni, Neutronic evaluation of coating and cladding materials for accident tolerant fuels 88 10-18, URL,//www.sciencedirect.com/science/article/pii/S0149197015301074.   DOI
19 F. Fejt, M. Sevecek, J. Frybort, O. Novak, Study on neutronics of VVER-1200 with accident tolerant fuel cladding 124 579-591, URL, http://www.sciencedirect.com/science/article/pii/S030645491830567X.   DOI
20 J. Krejci, M. Sevecek, L. Cvrcek, J. Kabatova, F. Manoch, Chromium and chromium nitride coated cladding for nuclear reactor fuel, in: Proceedings of the 20th International Corrosion Congress, EUROCORR, 2017.
21 L. Braase, Enhanced accident tolerant LWR fuels national metrics workshop report, URL, https://www.osti.gov/biblio/1073785.
22 D.V. Sidelev, E.B. Kashkarov, M.S. Syrtanov, V.P. Krivobokov, Nickel-chromium (niecr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings 369 69-78, URL, https://linkinghub.elsevier.com/retrieve/pii/S0257897219304281.   DOI
23 J. Bischoff, C. Delafoy, C. Vauglin, P. Barberis, C. Roubeyrie, D. Perche, D. Duthoo, F. Schuster, J.-C. Brachet, E.W. Schweitzer, K. Nimishakavi, AREVA NP's enhanced accident-tolerant fuel developments: focus on cr-coated m5 cladding, 50 (2) 223-228, http://www.sciencedirect.com/science/article/pii/S1738573317307945.   DOI
24 Y.-H. Koo, J.-H. Yang, J.-Y. Park, K.-S. Kim, H.-G. Kim, D.-J. Kim, Y.-I. Jung, K.-W. Song, KAERI's Development of LWR Accident-Tolerant Fuel 186 (vol. 2) 295-304, bibtex: koo2014kaeri.   DOI
25 A. Michau, F. Maury, F. Schuster, F. Lomello, J.C. Brachet, E. Rouesne, M. Le Saux, R. Boichot, M. Pons, High-temperature oxidation resistance of chromium-based coatings deposited by DLI-MOCVD for enhanced protection of the inner surface of long tubes 349 1048-1057, URL, http://www.sciencedirect.com/science/article/pii/S0257897218306625.   DOI
26 B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, P. Xu, J. Romero, H. Shah, K. Sridharan, Development of cold spray chromium coatings for improved accident tolerant zirconium-alloy cladding 519 247-254, URL, https://linkinghub.elsevier.com/retrieve/pii/S0022311518309620.   DOI
27 K. Daub, R. Van Nieuwenhove, H. Nordin, Investigation of the impact of coatings on corrosion and hydrogen uptake of zircaloy-4 467 260-270, URL, http://linkinghub.elsevier.com/retrieve/pii/S0022311515302300.   DOI
28 J. Rabe, K. Daub, H. Nordin, R. Van Nieuwenhove, T. Karlsen, Marie, R. Szoke, Investigation of PVD Coatings for Nuclear Applications: Hight Temperature Steam Exposure testingBibtex: IFE_numat.
29 R.E. Williford, Safety margins in zircaloy oxidation and embrittlement criteria for emergency core cooling system acceptance, 74 (3) 333-345, https://doi. org/10.13182/NT86-A33836.   DOI
30 R.E. Pawel, J.V. Cathcart, R.A. McKee, The kinetics of oxidation of zircaloy-4 in steam at high temperatures, 126 (7) 1105-1111, http://jes.ecsdl.org/content/126/7/1105.   DOI
31 Y. Yan, B. E. Garrison, T. S. Smith, M. Howell, J. R. Keiser, G. L. Bell, Investigation of high-temperature oxidation kinetics and residual ductility of oxidized samples of sponge-based -110 alloy cladding tubes vol. 2 (21) 1203-1208.   DOI
32 C. GRANDJEAN, G. HACHE, Cladding Oxidation. Resistance to Quench and Post-quench Loads. 239.
33 OECD, Nuclear Fuel Safety Criteria Technical Review (second ed.), Nuclear Safety, OECD Publishing. doi:10.1787/9789264991781-en. URL http://www.oecd-ilibrary.org/nuclear-energy/nuclear-fuel-safety-criteria-technicalreview-second-edition_9789264991781-en.
34 M. Negyesi, V. Kloucek, J. Lorincik, L. Novotny, J. Kabatova, S. Linhart, J. Adamek, J. Siegl, V. Vrtilkova, Proposal of new o-beta oxidation criterion for new types of the zr1nb alloy of fuel claddings 261 260-268, URL, http://www.sciencedirect.com/science/article/pii/S0029549312005353.   DOI
35 N. OECD, State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels, 2018.
36 S. J. Zinkle, K. A. Terrani, J. C. Gehin, L. J. Ott, L. L. Snead, Accident tolerant fuels for LWRs: a perspective 448 (1) 374-379. doi:10.1016/j.jnucmat.2013.12.005. URL//www.sciencedirect.com/science/article/pii/S0022311513012919   DOI
37 K.A. Terrani, Accident tolerant fuel cladding development: promise, status, and challenges 501 13-30, URL, http://www.sciencedirect.com/science/article/pii/S0022311517316227.   DOI
38 J. Brachet, V. Vandenberghe-Maillot, L. Portier, D. Gilbon, A. Lesbros, N. Waeckel, J. Mardon, Hydrogen content, preoxidation, and cooling scenario effects on post-quench microstructure and mechanical properties of zircaloy-4 and m5(R) alloys in LOCA conditions doi:10.1520/STP48132S, URL, http://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP48132S.htm.
39 A. Krausova, L. Tuma, M. Novak, L. Cvrcek, J. Krejci, J. Macak, Chromium coating as a surface protection of zirconium alloys, 61 (5) 169-172, https://content.sciendo.com/view/journals/kom/61/5/article-p169.xml.   DOI
40 B. Y. Volkov, V. V. Yakovlev, E. P. Ryazantsev, V. V. Kalygin, A. V. Burukin, A. V. Ivanov, Y. V. Pimenov, Particulars of the In-Reactor Behavior of VVER and PWR Uranium Dioxide Fuel with Pellets of Different Geometry vol. 114 (3) 169-176.   DOI
41 S. Kuprin, V. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, P.N. V'yugov, Vacuumarc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air 465 400-406, URL, //www.sciencedirect.com/science/article/pii/S002231151530043X.   DOI
42 Z. Yang, Y. Niu, J. Xue, T. Liu, C. Chang, X. Zheng, Steam oxidation resistance of plasma sprayed chromium-containing coatings at 1200c 0 (0), URL, https://onlinelibrary.wiley.com/doi/abs/10.1002/maco.201810156.
43 J.-C. Brachet, I. Idarraga-Trujillo, M.L. Flem, M.L. Saux, V. Vandenberghe, S. Urvoy, E. Rouesne, T. Guilbert, C. Toffolon-Masclet, M. Tupin, C. Phalippou, F. Lomello, F. Schuster, A. Billard, G. Velisa, C. Ducros, F. Sanchette, Early studies on cr-coated zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors 517 268-285, URL, https://linkinghub.elsevier.com/retrieve/pii/S0022311518316519.   DOI
44 J.C. Brachet, C. Lorrette, A. Michaux, C. Sauder, I. Idarraga-Trujillo, M. Le Saux, A. Ambard, CEA studies on advanced nuclear fuel claddings for enhanced accident tolerant LWRs fuel (LOCA and beyond LOCA conditions), URL, http://www-ist.cea.fr/publicea/exl-doc/201400000359_s1.pdf.
45 M. Sevecek, M. Valach, Evaluation metrics applied to accident tolerant fuel cladding concepts for VVER reactors 4 89, URL, https://ojs.cvut.cz/ojs/index.php/APP/article/view/3749.   DOI