• 제목/요약/키워드: m-semi-$T_2$

검색결과 111건 처리시간 0.028초

A Semi-empirical Mass-loss Rate in Short-period CVs

  • Kim, Woong-Tae;Sirotkin, Fedir V.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.76.2-76.2
    • /
    • 2010
  • We present the final results of our study on the mass-loss rate of donor stars in cataclysmic variables (CVs). Observed donors are oversized in comparison with those of isolated single stars of the same mass, which is thought to be a consequence of the mass loss. Using the empirical mass-radius relation of CVs and the homologous approximation for changes in effective temperature T2, orbital period P, and luminosity of the donor with the stellar radius, we find the semi-empirical mass-loss rate M2dot of CVs as a function of P. The derived M2dot is at ~10-9.5-10-10 $M\odot$/yr and depends weakly on P when P > 90 min, while it declines very rapidly towards the minimum period when P < 90 min. The semi-empirical M2dot is significantly different from, and has a less-pronounced turnaround behavior with P than suggested by previous numerical models. The semi-empirical P-M2dot relation is consistent with the angular momentum loss due to gravitational wave emission, and strongly suggests that CV secondaries with 0.075 $M\odot$ < M2 < 0.2 $M\odot$ are less than 2 Gyrs old. When applied to selected eclipsing CVs, our semi-empirical mass-loss rates are in good agreement with the accretion rates derived from the effective temperatures T1 of white dwarfs. Based on the semi-empirical M2dot, SDSS 1501 and 1433 systems that were previously identified as post-bounce CVs have yet to reach the minimal period.

  • PDF

Weak Separation Axioms in Generalized Topological Spaces

  • Renukadevi, V.;Sivaraj, D.
    • Kyungpook Mathematical Journal
    • /
    • 제54권3호
    • /
    • pp.387-399
    • /
    • 2014
  • We show that in quasi-topological spaces, separation axiom $T_2$ is equivalent to ${\alpha}-T_2$, $T_0$ is equivalent to semi - $T_0$, and semi - $T_{\frac{1}{2}}$ is equivalent to semi - $T_D$. Also, we give characterizations for ${\alpha}-T_1$, semi - $T_1$ and semi - $T_{\frac{1}{2}}$ generalized topological spaces.

수도 품종간 교잡에 있어서 간장의 유전분리 Ⅸ. 단간 Japonica 품종과 Semi-dwarf (d-t) gene 검정친과의 조합 (Segregation Mode of Plant Height in Crosses of Rice Cultivars Ⅸ. Crosses between Semi-dwarf Japonicas and Semi-dwarf(d-t) gene Testers)

  • 김용권;김홍열;남영우;박순직;허문회
    • 한국작물학회지
    • /
    • 제30권4호
    • /
    • pp.449-454
    • /
    • 1985
  • 단간 Japonica품종들의 semi-dwarf(d-t) gene에 대한 allelism을 검토하기 위해 semi-dwarf gene을 가진 wx817을 검정친으로 7개의 Japonica품종들을 교배하여 그 F$_1$, F$_2$ 및 F$_3$의 간장분리를 조사한 결과를 요약하면 다음과 같다. 1. 검정친 wx817과 7개 Japonica품종들간의 조합 F$_2$에서는 mode를 중심으로 정규분포 하였다. 2. F$_2$의 단간군. 중간군, 장간군에서 선발된 F$_3$계통은 선발 당시의 간장을 중심으로 정규분포를 나타내었다. 3. 조합에 따라서 F$_3$계통의 간장변이의 폭이 F$_2$집단에 비하여 다소 차이가 있었으나 분리양상은 모든 조합에서 동일하였다. 4. 이상의 결과로 볼 때 공시된 7개 Japonica품종들의 간장을 지배하는 주동유전子는 semi-dwarf(d-t) gene과 동일함을 알 수 있었고 품종에 따라 서로 다른 미동유전자가 작용하는 것으로 추정된다.

  • PDF

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

  • Ki, U-Hang;Kim, Soo Jin
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.43-63
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (φ, ξ, η, g) in a complex space form Mn+1(c). We denote by Rξ the structure Jacobi operator with respect to the structure vector field ξ and by ${\bar{r}}$ the scalar curvature of M. Suppose that Rξ is φ∇ξξ-parallel and at the same time the third fundamental form t satisfies dt(X, Y) = 2θg(φX, Y) for a scalar θ(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf hypersurface of type (A) in Mn+1(c) provided that ${\bar{r}-2(n-1)c}$ ≤ 0.

COMMUTING STRUCTURE JACOBI OPERATOR FOR SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN COMPLEX SPACE FORMS

  • KI, U-Hang;SONG, Hyunjung
    • East Asian mathematical journal
    • /
    • 제38권5호
    • /
    • pp.549-581
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c), c≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that M satisfies R𝜉S = SR𝜉 and at the same time R𝜉𝜙 = 𝜙R𝜉, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

PICTS 방법에 의한 급속열처리시킨 반절연성 InP(100)에서 깊은준위에 관한 연구 (A Study on Deep Levels in Rapid Thermal Annealed PICTS Semi-Insulating InP(100) by PICTS)

  • 김종수;김인수;이철욱;이정열;배인호
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권8호
    • /
    • pp.800-806
    • /
    • 1997
  • The behavior of de levels in rapid thermal annealed Fe-doped semi-insulating InP(100) was studied by photoinduced current transient spectrocopy(PICTS). In bulk InP, T2(Ec-0.24 eV), T3(Ec-0.30 eV) and T5(Ec-0.62 eV) traps were observed. After annealing the T2 trap was annihilated at 20$0^{\circ}C$ and recreated at 35$0^{\circ}C$. T3 trap was not affected below 40$0^{\circ}C$. With increasing temperature the concentration of T5 trap reduced and it was annihilated at 30$0^{\circ}C$. However the T1(Ec-0.16 eV) and T4(Ec-0.42 eV) traps were began to appear at 40$0^{\circ}C$and these concentrations were increased with annealing temperature. The T1 and T4 traps seem to be related to the isolated phosphorus vacancy( $V_{p}$) and $V_{p}$-indium antisite( $V_{p}$- $P_{in}$ ) or $V_{p}$-indium interstitial( $V_{p}$-I $n_{I}$) respectiely.respectiely.

  • PDF

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • 제36권3호
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.