ON MINIMAL SEMICONTINUOUS FUNCTIONS

Won Keun Min

Abstract. In this paper, we introduce the notions of minimal semicontinuity, strongly m-semiclosed graph, m-semiclosed graph, m-semi- T_{2}, m-semicompact and investigate some properties for such notions.

1. Introduction

In [4], Popa and Noiri introduced the notion of minimal structure which is a generalization of a topology on a given nonempty set. And they introduced the notion of m-continuous function [3] as a function defined between a minimal structure and a topological space. They showed that the m-continuous functions have properties similar to those of continuous functions between topological spaces. We introduced and studied the notions of m-semiopen sets, m-semiinterior and m-semi-closure operators [2] on a space with a minimal structure. In this paper, we introduce and study the notion of m-semicontinuous function defined between a minimal structure and a topological space. We also introduce the notions of strongly m-semiclosed graph, m-semiclosed graph, m-semi- T_{2}, m-semicompact and investigate some properties for such notions.

2. Preliminaries

Let X be a topological space and $A \subseteq X$. The closure of A and the interior of A are denoted by $c l(A)$ and $\operatorname{int}(A)$, respectively. A subfamily m_{X} of the power set $P(X)$ of a nonempty set X is called a minimal structure [4] on X if $\emptyset \in m_{X}$ and $X \in m_{X}$. By $\left(X, m_{X}\right)$, we denote a nonempty set X with a minimal structure m_{X} on X. Simply we call $\left(X, m_{X}\right)$ a space with a minimal structure m_{X} on X. Let $\left(X, m_{X}\right)$ be a space with a minimal structure m_{X} on X. For a subset A of X, the closure of A and the interior of A are defined as the following [4]:

$$
\begin{aligned}
m \operatorname{Int}(A) & =\cup\left\{U: U \subseteq A, U \in m_{X}\right\} \\
m C l(A) & =\cap\left\{F: A \subseteq F, X-F \in m_{X}\right\} .
\end{aligned}
$$

Received December 28, 2009; Revised March 8, 2011.
2010 Mathematics Subject Classification. 54C08.
Key words and phrases. m-semiopen sets, m-continuous, m-semicontinuous, strongly m semiclosed graph, m-semiclosed graph, m-semi- T_{2}, m-semicompact.

A subset A of X is called an m-semiopen set [2] if $A \subseteq m C l(m \operatorname{Int}(A))$. The complement of an m-semiopen set is called an m-semiclosed set. In [2], we showed that any union of m-semiopen sets is m-semiopen.

For a subset A of X, the m-semi-closure of A and the m-semi-interior of A, denoted by $m s C l(A)$ and $m s \operatorname{Int}(A)$, respectively, are defined as the following:

$$
\begin{aligned}
m s C l(A) & =\cap\{F: A \subseteq F, F \text { is } m \text {-semiclosed in } X\} \\
\operatorname{msInt}(A) & =\cup\{U: U \subseteq A, U \text { is } m \text {-semiopen in } X\} .
\end{aligned}
$$

Theorem 2.1 ([2]). Let $\left(X, m_{X}\right)$ be a space with a minimal structure m_{X} on X and $A \subseteq X$. Then
(1) $\operatorname{msInt}(A) \subseteq A \subseteq m s C l(A)$.
(2) If $A \subseteq B$, then $m s \operatorname{Int}(A) \subseteq m s \operatorname{Int}(B)$ and $m s C l(A) \subseteq m s C l(B)$.
(3) A is m-semiopen if and only if $\operatorname{msInt}(A)=A$.
(4) F is m-semiclosed if and only if $m s C l(F)=F$.
(5) $\operatorname{msInt}(\operatorname{msInt}(A))=m s \operatorname{Int}(A)$ and $m s C l(m s C l(A))=m s C l(A)$.
(6) $m s C l(X-A)=X-m s \operatorname{Int}(A)$ and $\operatorname{msInt}(X-A)=X-m s C l(A)$.

Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space $\left(X, m_{X}\right)$ with minimal structure m_{X} and a topological space (Y, τ). Then f is said to be m continuous [3] if for each x and each open set V containing $f(x)$, there exists an m-open set U containing x such that $f(U) \subseteq V$.

3. Minimal semicontinuous functions

Definition 3.1. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space X with a minimal structure m_{X} and a topological space Y. Then f is said to be minimal semicontinuous (briefly m-semicontinuous) if for each x and each open set V containing $f(x)$, there exists an m-semiopen set U containing x such that $f(U) \subseteq V$.

$$
m-\text { continuity } \Rightarrow m-\text { semicontinuity }
$$

In the above diagram, the converse may not be true.
Example 3.2. Let $X=\{a, b, c\}$. Consider a minimal structure $m_{X}=\{\emptyset,\{a\}$, $\{b\},\{a, b\}, X\}$ and a topology $\tau=\{\emptyset,\{a\},\{a, b\},\{a, c\}, X\}$. Let $f:\left(X, m_{X}\right) \rightarrow$ (X, τ) be the identity function. Then f is m-semicontinuous but not m continuous.

Theorem 3.3. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space X with a minimal structure m_{X} and a topological space (Y, τ). Then the following statements are equivalent:
(1) f is m-semicontinuous.
(2) For each open set V in $Y, f^{-1}(V)$ is m-semiopen.
(3) For each closed set B in $Y, f^{-1}(B)$ is m-semiclosed.
(4) $f(m s C l(A)) \subseteq \operatorname{cl}(f(A))$ for $A \subseteq X$.
(5) $m s C l\left(f^{-1}(B)\right) \subseteq f^{-1}(c l(B))$ for $B \subseteq Y$.
(6) $f^{-1}(\operatorname{int}(B)) \subseteq m s \operatorname{Int}\left(f^{-1}(B)\right)$ for $B \subseteq Y$.

Proof. (1) \Rightarrow (2) Let V be an open set in Y and $x \in f^{-1}(V)$. By hypothesis, there exists an m-semiopen set U containing x such that $f(U) \subseteq V$. So we have $x \in U \subseteq f^{-1}(V)$ for all $x \in f^{-1}(V)$. Hence $f^{-1}(V)$ is m-semiopen.
$(2) \Rightarrow(3)$ Obvious.
(3) \Rightarrow (4) For $A \subseteq X$,

$$
\begin{aligned}
& f^{-1}(c l(f(A))) \\
= & f^{-1}(\cap\{F \subseteq Y: f(A) \subseteq F \text { and } F \text { is closed }\}) \\
= & \cap\left\{f^{-1}(F) \subseteq X: A \subseteq f^{-1}(F) \text { and } f^{-1}(F) \text { is } m \text {-semiclosed }\right\} \\
\supseteq & \cap\{K \subseteq X: A \subseteq K \text { and } K \text { is } m \text {-semiclosed }\} \\
= & m s C l(A) .
\end{aligned}
$$

Hence $f(m s C l(A)) \subseteq \operatorname{cl}(f(A))$.
(4) \Leftrightarrow (5) Obvious.
(5) \Leftrightarrow (6) It follows from Theorem 2.1(6).
(6) $\Rightarrow(1)$ Let $x \in X$ and V an open set containing $f(x)$. Then from (6), it follows $x \in f^{-1}(V)=f^{-1}(\operatorname{int}(V)) \subseteq m s \operatorname{Int}\left(f^{-1}(V)\right)$. So there exists an m-semiopen set U containing x such that $x \in U \subseteq f^{-1}(V)$. Hence this implies f is m-semicontinuous.

Lemma 3.4 ([2]). Let $\left(X, m_{X}\right)$ be a space with a minimal structure m_{X} on X and $A \subseteq X$. Then
(1) $m \operatorname{Int}(m C l(A)) \subseteq m \operatorname{Int}(m C l(m s C l(A))) \subseteq m s C l(A)$.
(2) $\operatorname{msInt}(A) \subseteq m C l(m \operatorname{Int}(m s \operatorname{Int}(A))) \subseteq m \operatorname{Int}(m C l(A))$.
(3) A is m-semiclosed if and only if $m \operatorname{Int}(m C l(A)) \subseteq A$.

From Theorem 3.3 and Lemma 3.4, we have the next theorem.
Theorem 3.5. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space X with a minimal structure m_{X} and a topological space (Y, τ). Then the following statements are equivalent:
(1) f is m-semicontinuous.
(2) $f^{-1}(V) \subseteq m C l\left(m \operatorname{Int}\left(f^{-1}(V)\right)\right)$ for each open set V in Y.
(3) $\operatorname{mInt}\left(m C l\left(f^{-1}(F)\right)\right) \subseteq f^{-1}(F)$ for each closed set F in Y.
(4) $f(m \operatorname{Int}(m C l(A))) \subseteq \operatorname{cl}(f(A))$ for $A \subseteq X$.
(5) $m \operatorname{Int}\left(m C l\left(f^{-1}(B)\right)\right) \subseteq f^{-1}(c l(B))$ for $B \subseteq Y$.
(6) $f^{-1}(\operatorname{int}(B)) \subseteq m C l\left(m \operatorname{Int}\left(f^{-1}(B)\right)\right)$ for $B \subseteq Y$.

Definition 3.6. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space $\left(X, m_{X}\right)$ with a minimal structure m_{X} and a topological space (Y, τ). Then f has a strongly m-semiclosed graph (resp., an m-semiclosed graph) if for each $(x, y) \in(X \times Y)-G(f)$, there exist an m-smiopen set U containing x and an open set V containing y such that $(U \times c l(V)) \cap G(f)=\emptyset($ resp., $(U \times V) \cap G(f)=$ $\emptyset)$.

Lemma 3.7. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space $\left(X, m_{X}\right)$ with a minimal structure m_{X} and a topological space (Y, τ). Then f has a strongly m-semiclosed graph (resp., an m-semiclosed graph) if and only if for each $(x, y) \in(X \times Y)-G(f)$, there exist an m-semiopen set U containing x and an open set V containing y such that $f(U) \cap \operatorname{cl}(V)=\emptyset$ (resp., $f(U) \cap V=\emptyset)$.

Theorem 3.8. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space (X, m_{X}) with a minimal structure m_{X} and a topological space (Y, τ). If f is m-semicontinuous and (Y, τ) is T_{2}, then f has a strongly m-semiclosed graph.

Proof. Let $(x, y) \in(X \times Y)-G(f)$; then $f(x) \neq y$. Since Y is T_{2}, there are disjoint open sets U, V such that $f(x) \in U, y \in V$. This implies $\operatorname{cl}(V) \cap U=\emptyset$. And for $f(x) \in U$, from m-semicontinuity of f, there exists an m-semiopen set G containing x such that $f(G) \subseteq U$. Consequently, we can say that there exist an open set V and m-semiopen set G containing y, x, respectively, such that $f(G) \cap c l(V)=\emptyset$ and so by Lemma 3.7, f has a strongly m-semiclosed graph.

Corollary 3.9. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space $\left(X, m_{X}\right)$ with a minimal structure m_{X} and a topological space (Y, τ). If f is m-semicontinuous and (Y, τ) is T_{2}, then f has an m-semiclosed graph.

Theorem 3.10. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space (X, m_{X}) with a minimal structure m_{X} and a topological space (Y, τ). If f is a surjective function with a strongly m-semiclosed graph, then Y is T_{2}.

Proof. Let y and z be any distinct points of Y. Then there is $x \in X$ such that $f(x)=y$. Thus $(x, z) \in(X \times Y)-G(f)$. Since f has a strongly m semiclosed graph, there exist an m-semiopen set U containing x and an open set V containing z such that $f(U) \cap c l(V)=\emptyset$. So since $f(x)=y \in f(U) \subseteq$ $Y-\operatorname{cl}(V)$, there exists an open set G containing y such that $G \cap V=\emptyset$. Hence Y is T_{2}.

Definition 3.11. Let (X, m_{X}) be a space with a minimal structure m_{X}. Then X is said to be m-semi- T_{2} if for any distinct points x and y of X, there exist disjoint m-semiopen sets U, V such that $x \in U$ and $y \in V$.

Theorem 3.12. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space $\left(X, m_{X}\right)$ with a minimal structure m_{X} and a topological space (Y, τ). If f is an injective m-semicontinuous function and Y is T_{2}, then X is m-semi- T_{2}.

Proof. Obvious.
Theorem 3.13. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space $\left(X, m_{X}\right)$ with a minimal structure m_{X} and a topological space (Y, τ). If f is an injective m-semicontinuous function with an m-semiclosed graph, then X is m-semi- T_{2}.

Proof. Let x_{1} and x_{2} be any distinct points of X. Then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, so $\left(x_{1}, f\left(x_{2}\right)\right) \in(X \times Y)-G(f)$. Since f has an m-semiclosed graph, there exist an m-semiopen set U containing x_{1} and $V \in \tau$ containing $f\left(x_{2}\right)$ such that $f(U) \cap V=\emptyset$. Since f is m-semicontinuous, $f^{-1}(V)$ is an m-semiopen set containing x_{2} such that $U \cap f^{-1}(V)=\emptyset$. Hence X is m-semi- T_{2}.

Corollary 3.14. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be a function between a space $\left(X, m_{X}\right)$ with a minimal structure m_{X} and a topological space (Y, τ). If f is a injective m-semicontinuous function with a strongly m-semiclosed graph, then X is m-semi- T_{2}.

Definition 3.15. A subset A of a space (X, m_{X}) with a minimal structure m_{X} is called minimal semicompact (briefly m-semicompact) relative to A if every collection $\left\{U_{i}: i \in J\right\}$ of m-semiopen subsets of X such that $A \subseteq \cup\left\{U_{i}: i \in J\right\}$, there exists a finite subset J_{0} of J such that $A \subseteq \cup\left\{U_{j}: j \in J_{0}\right\}$. A subset A of a minimal structure $\left(X, m_{X}\right)$ is said to be m-semicompact if A is m-semicompact as a subspace of X.

Theorem 3.16. Let $f:\left(X, m_{X}\right) \rightarrow(Y, \tau)$ be an m-semicontinuous function between a space $\left(X, m_{X}\right)$ with a minimal structure m_{X} and a topological space (Y, τ). If A is an m-semicompact set, then $f(A)$ is compact.
Proof. Let $\left\{U_{i}: i \in J\right\}$ be an open cover of $f(A)$ in Y. Then since f is an m-semicontinuous function, $\left\{f^{-1}\left(U_{i}\right): i \in J\right\}$ is an m-semiopen cover of A in X. By m-semicompactness, there exists $J_{0}=\left\{j_{1}, j_{2}, \ldots, j_{n}\right\} \subseteq J$ such that $A \subseteq \cup_{j \in J_{0}} f^{-1}\left(U_{j}\right)$. Hence $f(A) \subseteq f\left(\cup_{j \in J_{0}} f^{-1}\left(U_{j}\right)\right) \subseteq \cup_{j \in J_{0}} U_{j}$. Thus $f(A)$ is compact.

References

[1] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
[2] W. K. Min, m-semiopen sets and M-semicontinuous functions on spaces with minimal structures, Honam Math. J. 31 (2009), no. 2, 239-245.
[3] V. Popa and T. Noiri, On the definition of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 9-19.
[4] , On M-continuous functions, Anal. Univ. Dunarea de Jos Galati, Ser. Mat. Fiz. Mec. Teor. (2) 18(23) (2000), 31-41.

Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail address: wkmin@kangwon.ac.kr

