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ON RECURRENT SPACE-LIKE
COMPLEX HYPERSURFACES OF A
SEMI-DEFINITE COMPLEX SPACE FORM

JUNG-HwaN KwON

ABSTRACT. The purpose of this paper is to study some properties
of n-dimensional recurrent space-like complex hypersurfaces in an
{n + l)-dimensional semi-definite complex space form Mg‘j’tl(c),
t=0or1 c#0

1. Introduction

Theory of semi-definite complex submanifolds of a semi-definite com-
plex space form is one of the most interesting topics in complex differ-
ential geometry and it has been investigated by many geometers from
the varions points of view ([1]-[5] and [9]).

Now, let us denote by M a semi-definite Kachler manifold. We denote
by R the Riemannian curvature tensor on M. Then M is said to be
semi-symmetric if it satisfies the condition R(X,Y)R=0 for any vector
field X and ¥ on M. Cartan introduced the notion of semi-symmetric
Riemannian spaces and Szabé [12] studied systematically in detail the
manifold structure!

On the other hand, in 7] Kobayashi and Nomizu have introdeced the
notion of recurrent tensor field of type (r,s) on a manifold M with a
linear connection. That is, a non-zero tensor field K of type (r,s) on
M is said to be recurrent if there exists a 1-form « such that VK =
K @ «, where V denotes the Kaehler connection of A. Besides, in
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[11] Suh classified real hypersurfaces in a complex space form which has
n-recurrent second fundamental tensor.

In their paper [5], Choi, the present author and Suh proved the fol-
lowing theorem.

THEOREM A. Let M = M7 be an n-dimensional semi-symmetric and
semi-definite complex hypersurface of index 2s in semi-definite complex
space form M7 (c), 0 € s<n,t=00r1, ¢ #0. Then M is either
totally geodesic with v = n(n + 1)c or Einstein with r = n®c, where r
denotes the scalar curvature.

On the other hand, Ryan [10] proved the following theorem.

THEOREM B. Let M be an n-dimensional complex hypersurface of
an (n+1)-dimensional complex space form M = M"t(c) (¢ £0). Then
the following conditions are equivalent :

(1) RR=0on M ;
(2) RS=0on M ;
(3) M is Einstein ;
(4) S is parallel ;
(5) R is parallel ;
(6) M is totally geodesic or ¢ > 0 and M is locally the complex
quadric Q™ (globally, if M is complete and M = CP™1(c)).

The purpose of this paper is to investigate some properties of semi-
definite complex submanifolds immersed in a semi-definite complex space
form and determine recurrent space-like complex hypersurfaces of semi-
definite complex space form.

By Theorem A, we prove the following theorem.

THEOREM 1. Let M’ be an (n+1)-dimensional semi-definite complex
space form Mgftl (c) of index 2t, t =0 or 1, n 2 2 and of constant holo-
morphic sectional curvature ¢(# 0) and let M be a space-like complex
hypersurface. If M is recurrent, then it is locally symmetric.

2. Semi-definite Kaehler manifolds

Let M be a complex m(2 2)-dimensional semi-definite Kaehler man-
ifold equipped with semi-definite Kaehler metric tensor g and almost
complex structure J. For the semi-definite Kaehler structure {g, J}, it
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follows that .J is integrable and the index of g is even, say 2¢ (0 < ¢ £ m).
In such a case M can be denoted by M. The index ¢ is contained
in the range 0 < ¢ < m, M is called an indefinite Kaehler manifold
and the structure {g, J} is called an indefinite Kaehler structure and in
particular, in the case where ¢ = 0 or m, M is only called a Kaehler
manifold, and then the structure {g,J} is called a Kaehler structure.
We can choose a local field {E4,E4-} ={E1,...,Emn, E1-,..., Eip-} of
orthonormal frames on a neighborhood of M, where E4- = JFE4 and
A* =m + A. Here the indices A, B,... run from 1 to m. We set

1 — 1
Up = —=(Es —iEs), Ta=—=(Fa+iEs),
A ﬁ(A A=) A \/§(A iE4-)

where ¢ denotes the imaginary unit. Then {{/4} constitutes a local field
of unitary frames on the neighborhood of M. This is a complex linear
frame which is orthonormal with respect to the semi-definite Kaehler
metric, that is, g(Us,Up) = 4045, where

ea=—-1lorl, accordingas 1 £ A<qgorg+1Z A< m.

Let {wa} be the dual coframe field with respect to the local field
{Ua} of unitary frames on the neighborhood of M. Then {wa} =
{wi,...,wm} consists of complex-valued 1-forms of type (1,0) on M
such that ws(Up) = eadap and {wa,wa} = {w1,...,wm, W1,...,0m}
are linearly independent. The semi-definite Kaehler metric g of M can
be expressed as g = 2)_ , €aws ® Wa. Associated with the frame field
{U4}, there exist complex-valued forms w4p, which are usually called
connection forms on M such that they satisfy the structure equations

of M ;

dwy + ZEBWAB Awpg =0, wap+wpa=0,

B
(2.1) dwap + Z ecwac ANwep = Qag,
c
Qap =Y _ecepRipopwe Aop,
C,D

where () = (245) (resp. Rjigep) denotes the curvature form (resp. the
components of the semi-definite Riemannian curvature tensor R) of M.,
The equation (2.1) implies the skew-Hermitian symmetry of 45, which
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is equivalent to the symmetric condition Rzgeop = Egapa. Moreover,
the first Bianchi equation ) 5 epQap Awp = 0 is given by the exterior
differential of the first and third equations of (2.1), which implies the
further symmetric relations

Ripcp = Ricsp = Rpcpi = Rppea-

Now, relative to the frame field chosen above, the Ricel tensor S of
M can be expressed as follows ;

S:ZEAEB(SAEOJA ®@wp + Sip@a Qwp),
AB

where Sy5 = Y.cecRecas = Sga = Sip- The scalar curvature 7 is
also given by r =23 , €454 7. An n-dimensional semi-definite Kaehler
manifold M is said to be Einstein if the Ricci tensor 5 is given by

,
(2.2) Sap = 5-€4%45-

The components Ripopr and Rigopg of the covariant derivative of
the Riemannian curvature tensor R are defined by

Z ee(Rapepewe + Ripepeve) = dRipeh
E

—Y ee(Rgpcp@ea + Ripcpwes + Ripspwee + RipcsWED)-
E

The second Bianchi identity is given by

(2.3) Ripcpe = Risebc-

Let M be an m-dimensional semi-definite Kaehler manifold of index
2q (0 £ ¢ £ m). A plane section P of the tangent space T, M of M
at any point z is said to be non-degenerate provided that g.|p is non-
degenerate. It is easily seen that P is non-degenerate if and only if it
has a basis {X, Y} such that

9(X, X)g(Y,Y) — g(X,Y)* #0.

If the non-degenerate plane P is invariant by the complex structure J, it
is said to be holomorphic. It is also trivial that the plane P is holomor-
phic if and only if it. contains a vector X in P such that g(X, X) # 0.



On recurrent space-like complex hypersurfaces 247

For the non-degenerate plane P spanned by X and Y in F, the secticnal
curvature K (P) is usually defined by

Q(R(X1 Y)Ya X)
(X, X)g(Y,Y) —g(X,Y)?

K(P)=K(X,Y) = -

The sectional curvature K(P) of the holomorphic plane P is called the
holomorphic sectional curvature, which is denoted by H(F). The semi-
definite Kaehler manifold M is said to be of constant holomorphic sec-
tional curvature if its holomorphic sectional curvatures H(P) are con-
stant for all holomorphic planes at all points of M. Then M is called a
semi-definite complex space form, which is denoted by M7"{c} provided
that it is of constant holomorphic sectional curvature ¢, of complex di-
mension m and of index 2¢(= 0). It is seen in Barros and Romero [4]
and Wolf [13] that the standard models of semi-definite complex space
forms are the following three kinds : the semi-definite complex projec-
tive space C'P,", the semi-definite complex Euclidean space C7" or the
semi-definite complex hyperbolic space CH*, according as ¢ >0, ¢ =0
or ¢ < 0. For any integer q (0 = ¢ £ m) it is also seen by {13] that
they are complete simply connected and connected semi-definite com-
plex space forms of dimension m and of index 2¢. The Riemannian
curvature tensor R1pc-p of M*(c) is given by

C
Ripep = 55360(5AB<50D +dacdBD)-

3. Semi-definite complex submanifolds

Let M’ be an (n + p)-dimensional connected semi-definite Kaehler
manifold of index 2(s +¢) (0 £ 5 S n, 0 =t < p) with semi-definite
Kaehler structure (g',J’). Let M be an n-dimensional connected semi-
definite complex submanifold of M’ and let g be the induced semi-
definite Kaehler metric tensor of index 2s on M from ¢’. We can choose
a local field {Ua} = {U;,Uz} = {U1,...,Untp} of unitary frames on a
neighborhood of M’ in such a way that, restricted to M, U,,..., U, are
tangent to M and the others are normal to M. Here and in the sequel,
the following convention on the range of indices is used throughout this
paper, unless otherwise stated ;

ABC,---=1,...,n,n+1,...,0n+p;
i, 1,k 4,---=1,...,n; z,4,%--=n+1 ..., n+p
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With respect to the frame field, let {wa} = {w;,wy} be its dual frame
fields. Then the semi-definite Kaehler metric tensor ¢’ of M’ is given by
g =2 4€awa®Wy, where {e4} = {&;,e,}, £4 = £1. The connection
forms on M’ are denoted by {wap}. The canonical forms w4 and the
connection forms w4 p of the ambient space M’ satisfy (2.1). Restricting
these forms to the submanifold M, we have

(3.1) wy =0,

and the induced semi-definite Kaehler metric tensor g of index 25 of M
is given by ¢ = 23 .¢;w; @ w;. Then {U;} is a local unitary frame
field with respect to this metric and {w;} is a local dual frame field due
to {U;}, which consists of complex-valued 1-forms of type (1,0) on M.
Moreover wy, ...,Wn,@1,...,0, are linearly independent, and {w,} is
the canonical forms on M. It follows from (3.1) and Cartan’s lemma
that the exterior derivative of (3.1) give rise to

(3.2) Wi = ijhijzwj, hi;* = hy®.
7

The quadratic form o = Zi’j,x €i€5€zhi;7w; ®wj @ Uy with values in the
normal bundle NM on M in M’ is called the second fundamental form
of the submanifold M. From the structure equations for M are similarly
given by

dw; + Zijij Aw; =0, wit+wy; =0,
4]

dwij + Y exwir Awiy =g, Quj = Y exerRyjqwe AL,
k ki

(3.3)

Moreover the following relationships are obtained ;

(34) dwmy + Zezwxz Awyy = Qxy, Qxy = ZEkEIR:Eykl-wk Ay,
z k.l

where {1, is called the normal curvature form of M and Rg,,r are the
components of the normal curvature tensor of M. For the Riemannian
curvature tensors R and R’ of M and M’ respectively, it follows from
(2.1) and (3.1)-(3.4) that the Gauss and Ricci equations are given by

1] T, z T
Rijer = R — E €xhik"ha®™,  Rpyd = Rz 0+ E N Y LS
T r
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The components S of the Ricci tensor S and the scalar curvature r of
M are given by

(3.5) S5 = xRz —hig’ 1=200_exe; i, — ha),
k k.

where we put h;;? = hy? = PO £x€rhir®he;® and ho = > eih;3t.
Now, the components ;" and A ;" of the covariant derivative of
the second fundamental form on M are given by

(3.6) ZEk(hz’jkxwk + bk "Wk)
k
= dhur - Zsk(hkjmwki + hikxwkj) + Z'Syhiijxy-
k Y

Then, substituting dh;* in this definition into the exterior derivative of

(3.2) and using {2.1), (3.1)-(3.3) and (3.6), we have

(3.7) hiji® = Rigs®,  hyp® = _R;-cz'jfc'

In particular, let the ambient space M’ be an (n-+p)-dimensional semi-
definite complex space form M_1F(c) of constant holomorphic sectional
curvature ¢ and of index 2{s +¢) (0 < s <n, 0 £t < p). Then we get

[ —
(3.8) Ry = §€j€k(5z‘j5m + Gindji) — Z exhjkhi®,
1
(39) Si} = (i%_keiéij - hz‘;z,
(3.10) r =n(n+ e — 2ha,

4. Proof of Theorem 1

As an application of semi-symmetric complex hypersurfaces in an
semi-definite complex space form this section is devoted to the inves-
tigation of recurrent complex hypersurfaces. Let M’ be an (n + 1)-
dimensional semi-definite complex space form M (c) of index 2t, ¢ =0
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or 1 and of holomorphic sectional curvature ¢(# 0) and let M be a space-
like complex hypersurface. Assume that M is recurrent, namely, there
exists a 1-form « such that VR = R®a, where V and R are the Kaehler
connection and the Riemannian curvature tensor of M.

Let Rg; and oy be the components of R and o with respect to a
local complex coordinate system (z7), respectively. Then we have

(4.1) Ryjuin = anfyg,  or Ry = op Bz

By the assumption (4.1) we see that the components Rz, of V2R
are given by
(4.2) Bijimne = anar Byjpr + ansByjg = (anar + anr) Ry,
where a;; denote the components of Va. On the other hand, we can
show that « is the differential of a differentiable function defined on M.
It suffices to show in the case of non-flat. We define the analytic function
f by g(R, R). Let My be a subset of M consisting of points = in M such
that f(z) = 0. Suppose that the interior of Mg is not empty. Then, by
the property of analytic functions, My coincides with whole M, which
means that f vanishes identically on M. So M is flat, a contradiction
to the agsumption that M is not flat. Accordingly the interior of My is
empty, from which it follows that M — Mg is dense in M. Because of
VR =R® «, we have

Vg(R, R} = 2g(R® , R) = 2a9(R, R)
and hence df = 2o f. It implies that 2a = d log|f| on M since M — My
is dense. From (4.2), we have

REjkm = Rijkffha
which is equivalent to the fact that M is semi-symmetric, that is,
R(X,2Y)R=0
for any vectors X and Y on M. According to Theorem A, if ¢ # 0,
then M is totally geodesic with = n{n + 1)c or Einstein with r = n?c.
Suppose that M is totally geodesic. Then it is easily seen that it is
locally symmetric, because of (3.8). Next, suppose that it is not totally
geodesic. By the second Bianchi identity (2.3) and (4.1) we have
Rfj.u’h = R%jh.!‘k = o fly 0 = OfkRijht"

and therefore we have o, S, = axS,;. Since M is Einstein, using (2.2)
we have rapdy = ragdp, which implies that (n — 1)re; = 0. Because

r =n’c # 0 and n 2 2, we obtain a; = 0 for any index j, which means
that M is locally symmetric.
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ExampLE 4.1 ([1], [9]). For any integer p (2 2) an indefinite com-
plex hypersurface M(p, A) of a (2n + 1)-dimensional indefinite complex
Euclidean space C2"*t! of index 2n defined as follows ; Let (24) =
(27,297, 22711y = (21, ..., 2"t1} be a complex coordinate of C2*+! and
let A be a complex number such that |A\| = 1. Then M(p,A) is an
indefinite complete complex hypersurface of index 2n defined by

S2ntl _ ij(zj + /\zj’“), j* =n-+7, fj(z) = 2P,
7

By a simple calculation, we can easily see that the second fundamental
form and its covariant derivatives of M are of the forms ;

hi; = p(p— Ddiu® >, hi; = p(p— DAG; "2,
hisgo = plp — 1)A%8,50F 72,
hiji = p(p — 1)(p — 2)8i8:x0: 2,
hijk =plp— 1)(p— 2))\61-:,-}5%”,-1"_3,
hi-j-x = p(p — 1){p — 2)/\25@5%%;}*3}
Risjokm = p(p — 1){p — 2)A%8;;8 00" 2,

where p; = 2t + Azt .

REMARK 4.1. In this example, by the property of the second funda-
mental form, we see that M is recurrent. Furthermore if p = 3, then
the second fundamental form is not parallel and M is Ricei flat, but not
locally symmetric. Accordingly, if ¢ = 0, Theorem 1 does not hold.

In the case where the ambient space is a complex projective space, as
a direct consequence of Theorem 1, by Theorem B we can prove

THEOREM 4.1. Let M be an n-dimensional complete complex hyper-
surface of an (n+ 1)-dimensional complex projective space CP™*1. If M
is recurrent, then M is congruent to a complex quadric ™ or a complex
projective space CP™,
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