• 제목/요약/키워드: low-temperature oxide

검색결과 1,088건 처리시간 0.026초

스프레이 공정을 이용한 nc-ZnO/ZnO 전계효과트랜지스터 제작 및 특성 분석 (The Study of nc-ZnO/ZnO Field-effect Transistors Fabricated by Spray-pyrolysis Process)

  • 조준희
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.22-25
    • /
    • 2022
  • Metal oxide semiconductor (MOS) based on spray-pyrolysis deposition technique has attracted large attention due to simple and low-cost processibility while preserving their intrinsic optical and electrical characteristics. However, their high process temperature limits practical applications. Here, we demonstrated the nc-ZnO/ZnO field-effect transistors (FETs) via spray-pyrolysis as incorporating ZnO nanocrystalline nanoparticles into typical ZnO precursor. The nc-ZnO/ZnO FETs exhibit good quality of electrical properties. Our experiments reveal that nc-ZnO in active layer enhance electrical characteristics.

금속알루미늄의 전기화학적 성질과 응용 (Electrochemical Properties of Metal Aluminum and Its Application)

  • 탁용석;강진욱;최진섭
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.335-342
    • /
    • 2006
  • 금속 알루미늄의 낮은 환원전위는 전기화학적 산화반응을 통하여 알루미늄과 그 표면에 존재하는 산화막의 구조 및 성질의 변화를 일으킨다. 산성용액에서 알루미늄을 전기화학적으로 에칭하여 표면적을 확대시키고 중성의 용액에서 알루미늄 표면에 치밀한 유전체 산화막을 형성시켜 커패시터의 전극으로 이용하고 있다. 저온의 산성용액에서는 양극산화시 나노크기의 다공층 산화막이 형성되며, 나노구조체의 템플레이트로 사용되고 있다. 이와같은 알루미늄의 전기화학적 특성은 알루미늄을 새로운 기능성을 가진 재료로 변화시킴으로서 다양한 분야에서 응용될 것으로 기대된다.

Characterization of the Galvanizing Behavior Depending on Annealing Dew Point and Chemical Composition in Dual-Phase Steels

  • Shin, K.S.;Park, S.H.;Jeon, S.H.;Bae, D.C.;Choi, Y.M.
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.247-253
    • /
    • 2010
  • The characteristics of selective oxidation prior to hot-dip galvanizing with the annealing atmosphere dew point and chemical composition in dual-phase steels and their effect on the inhibition layer formation relevant to coating adhesion have been studied using a combination of electron microscopic and surface analytical techniques. The annealed and also galvanized samples of 3 kinds of Si/Mn ratios with varied amounts of Si addition were prepared by galvanizing simulator. The dew point was controlled at soaking temperature $800^{\circ}C$ in 15%$H_2$ -85%$N_2$ atmosphere. It was shown that good adhesion factors were mainly uniformity of oxide particle distribution of low number density and low Si/Mn ratio prior to hot-dip galvanizing. Their effect was the greatly reduced coating bare spots and the formation of uniform inhibition layer leading to good adhesion of Zn overlay. The mechanism of good adhesion is suggested by two processes: the formation of inhibition layer on the oxide free surface uncovered with no $SiO_2$-containing particles in particular, and the inhibition layer bridging of oxide particles. The growth of inhibition layer was enhanced markedly by the delayed reaction of Fe and Al with the increase of Si/Mn ratio.

$N_2O$가스를 사용하여 PECVD로 성장된 Oxynitride막의 특성 (Characteristics of oxynitride films grown by PECVD using $N_2O$ gas)

  • 최현식;이철인;장의구
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.9-17
    • /
    • 1996
  • Plasma enhanced chemical vapor deposition (PECVD) allows low temperature processing and so it is widely used, but it causes instability of devices due to serious amount of impurities within the film. In this paper, electrical and chemical characteristics of the PECVD oxynitride film formed by different N$_{2}$O to N$_{2}$O+NH$_{3}$ gas ratio is studied. It has been found that hydrogen concentration of PECVD oxynitride film was decreased from 4.25*10$^{22}$ [cm$^{-2}$ ] to 1.18*10$^{21}$ [cm$^{-2}$ ] according to the increase of N$_{2}$O gas. It was also found that PECVD oxynitride films have low trap density in the oxide and interface in comparison with PECVD nitroxide films, and has higher refractive index and capacitance than oxide films. In particular, oxynitride film formed in gas ratio of N$_{2}$O/(N$_{2}$O+NH$_{3}$)= 0.88 shows increased capacitance and decreased leakage current due to small portion of hydrogen in oxide and the accumulation of nitrogen about 4[atm.%] at the interface.

  • PDF

Direct Growth of Graphene at Low Temperature for Future Device Applications

  • Kim, Bum Jun;Nasir, Tuqeer;Choi, Jae-Young
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.203-223
    • /
    • 2018
  • The development of two-dimensional graphene layers has recently attracted considerable attention because of its tremendous application in various research fields. Semi-metal materials have received significant attention because of their excellent biocompatibility as well as distinct physical, chemical, and mechanical properties. Taking into account the technical importance of graphene in various fields, such as complementary metal-oxide-semiconductor technology, energy-harvesting and -storage devices, biotechnology, electronics, light-emitting diodes, and wearable and flexible applications, it is considered to be a multifunctional component. In this regard, material scientists and researchers have primarily focused on two typical problems: i) direct growth and ii) low-temperature growth of graphene. In this review, we have considered only cold growth of graphene. The review is divided into five sections. Sections 1 and 2 explain the typical characteristics of graphene with a short history and the growth methods adopted, respectively. Graphene's direct growth at low temperatures on a required substrate with a well-established application is then precisely discussed in Sections 3 and 4. Finally, a summary of the review along with future challenges is described in Section 5.

고압/저압 EGR 공급 비율에 따른 디젤 엔진의 연소 및 배기 특성 (Combustion and Emissions Characteristics of a Diesel Engine with the Variation of the HP/LP EGR Proportion)

  • 박영수;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.90-97
    • /
    • 2014
  • The effects of high pressure and low pressure exhaust gas recirculation (HP/LP EGR) portion on diesel engine combustion and emissions characteristics were investigated in a 2.2 L passenger-car diesel engine. The po3rtion of HP/LP EGR was varied from 0 to 1 while fixing the mass flow rate of fresh air. The intake manifold temperature was lowered with the increasing of the portion of LP EGR, which led to the retardation of heat release by pilot injection. The lowered intake manifold temperature also resulted in low nitrogen oxide (NOx) emissions due to decreased in-cylinder temperature and prolonged ignition delay, however, the carbon monoxide (CO) emission showed opposite trend to NOx emissions. The brake specific fuel consumption (BSFC) was decreased as the portion of LP EGR increased due to lowered exhaust manifold pressure by wider open of turbocharger vane. Consequently, the trade-off relationship between NOx and BSFC could be improved by increasing the LP EGR portion.

ZnO세라믹스의 소결온도가 전기적 특성에 미치는 영향 (The effect of sintering temperature on the electrical properties of ZnO ceramics)

  • 김용혁;이덕출
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권1호
    • /
    • pp.40-47
    • /
    • 1995
  • Electrical properties of ZnO ceramics based on Bi oxide was investigated in relation to sintering temperature. In the temperature range >$1150^{\circ}C$ to >$1350^{\circ}C$ the grain size increased from 9.mu.m to 20.mu.m when the sintering temperature was raised. The leakage current in the low voltage range increased as the potential barrier decreases, which is caused by increasing the grain size at high temperature. The dielectric characteristics of the ZnO ceramics was also affected by sintering temperature. Large dielectric constant was attributed, to the grainboundary layer of polycrystalline ZnO ceramics and decreasing grainboundary width. The variation of breakdown voltage with sintering temperature was attributed to the change of the donor concentration in the ZnO grain and grain size. The results showed that breakdown voltage increased decreasing grain size and donor concentration. Nonohmic coefficient was associated with the lower breakdown voltage per grainboundary layer due to the grain growth and higher donor concentration.

  • PDF

Electrothermal Analysis for Super-Junction TMOSFET with Temperature Sensor

  • Lho, Young Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • 제37권5호
    • /
    • pp.951-960
    • /
    • 2015
  • For a conventional power metal-oxide-semiconductor field-effect transistor (MOSFET), there is a trade-off between specific on-state resistance and breakdown voltage. To overcome this trade-off, a super-junction trench MOSFET (TMOSFET) structure is suggested; within this structure, the ability to sense the temperature distribution of the TMOSFET is very important since heat is generated in the junction area, thus affecting its reliability. Generally, there are two types of temperature-sensing structures-diode and resistive. In this paper, a diode-type temperature-sensing structure for a TMOSFET is designed for a brushless direct current motor with on-resistance of $96m{\Omega}{\cdot}mm^2$. The temperature distribution for an ultra-low on-resistance power MOSFET has been analyzed for various bonding schemes. The multi-bonding and stripe bonding cases show a maximum temperature that is lower than that for the single-bonding case. It is shown that the metal resistance at the source area is non-negligible and should therefore be considered depending on the application for current driving capability.

고체 산화물 CO2-H2O 공전해 기반 합성가스 생산 기술 (Syngas Production Based on Co-electrolysis of CO2 and H2O in Solid Oxide Electrolysis Cell )

  • 전남기;이상혁;김상국;안치규;안진수
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.140-145
    • /
    • 2024
  • High temperature co-electrolysis of H2O-CO2 mixtures using solid oxide cells has attracted attention as promising CO2 utilization technology for production of syngas (H2/CO), feedstock for E-fuel synthesis. For direct supply to E-fuel production such as hydrocarbon and methanol, the outlet gas ratio (H2/CO/CO2) of co-electrolysis should be controlled. In this work, current voltage characteristic test and product gas analysis were carried out under various reaction conditions which could attain proper syngas ratio.

CO2 저감을 위한 고체산화물 수전해 스택의 역수성가스 전환 반응 고찰 (A Study on Reverse-water Gas Shift Reaction in Solid Oxide Water Electrolysis Cell-stack for CO2 Reduction)

  • 김상국;전남기;이상혁;안치규;안진수
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.162-167
    • /
    • 2024
  • Fossil fuels have been main energy source to people. However, enormous amount of CO2 was emitted over the world , resulting in global climate crisis today. Recently, solid oxide electrolyzer cell (SOEC) is getting attention as an effective way for producing H2, a clean energy resource for the future. Also, SOEC could be applicable to reverse water-gas shift reaction process due to its high-temperature operating condition. Here, SOEC system was utilized for both H2 production and CO2 reduction process, allowing product gas composition change by controlling operating conditions.