DOI QR코드

DOI QR Code

A Study on Reverse-water Gas Shift Reaction in Solid Oxide Water Electrolysis Cell-stack for CO2 Reduction

CO2 저감을 위한 고체산화물 수전해 스택의 역수성가스 전환 반응 고찰

  • SANGKUK KIM (Hydrogen and Low-Carbon R&D Laboratories, POSCO N.EX.T Hub) ;
  • NAMGI JEON (Hydrogen and Low-Carbon R&D Laboratories, POSCO N.EX.T Hub) ;
  • SANGHYEOK LEE (Hydrogen and Low-Carbon R&D Laboratories, POSCO N.EX.T Hub) ;
  • CHIKYU AHN (Hydrogen and Low-Carbon R&D Laboratories, POSCO N.EX.T Hub) ;
  • JIN SOO AHN (Hydrogen and Low-Carbon R&D Laboratories, POSCO N.EX.T Hub)
  • 김상국 (포스코홀딩스 미래기술연구원 수소저탄소연구소) ;
  • 전남기 (포스코홀딩스 미래기술연구원 수소저탄소연구소) ;
  • 이상혁 (포스코홀딩스 미래기술연구원 수소저탄소연구소) ;
  • 안치규 (포스코홀딩스 미래기술연구원 수소저탄소연구소) ;
  • 안진수 (포스코홀딩스 미래기술연구원 수소저탄소연구소)
  • Received : 2024.03.07
  • Accepted : 2024.04.18
  • Published : 2024.04.30

Abstract

Fossil fuels have been main energy source to people. However, enormous amount of CO2 was emitted over the world , resulting in global climate crisis today. Recently, solid oxide electrolyzer cell (SOEC) is getting attention as an effective way for producing H2, a clean energy resource for the future. Also, SOEC could be applicable to reverse water-gas shift reaction process due to its high-temperature operating condition. Here, SOEC system was utilized for both H2 production and CO2 reduction process, allowing product gas composition change by controlling operating conditions.

Keywords

Acknowledgement

이 논문은 2020년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20203030030020, 고체산화물 연료전지 분리판용 특수강 신소재 및 양산기술 개발).

References

  1. J. Kim, Y. Yoo, M. Seo, J. Baek, and S. Kim, "Performance analysis of adiabatic reactor in thermochemical carbon dioxide methanation process for carbon neutral methane production", Journal of Hydrogen and New Energy, Vol. 34, No. 3, 2023, pp. 316-326, doi: https://doi.org/10.7316/JHNE.2023.34.3.316. 
  2. D. Han and Y. Baek, "A study on the synthesis of CH4 from CO2 of biogas using 40 wt% Ni-Mg catalyst: characteristic comparison of commercial catalyst and 40 wt% Ni catalyt", Journal of Hydrogen and New Energy, Vol. 32, No. 5, 2021, pp. 388-400, doi: https://doi.org/10.7316/KHNES.2021.32.5.388. 
  3. S. W. Kim, H. Kim, K. J. Yoon, J. H. Lee, B. K. Kim, W. Choi, J. H. Lee, and J. Hong, "Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production", Journal of Power Sources, Vol. 280, 2015, pp. 630-639, doi: https://doi.org/10.1016/j.jpowsour.2015.01.083. 
  4. M. Marchese, E. Giglio, M. Santarelli, and A. Lanzini, "Energy performance of power-to-liquid applications integrating biogas upgrading, reverse water gas shift, solid oxide electrolysis and Fischer-Tropsch technologies", Energy Conversion and Management: X, Vol. 6, 2020, pp. 100041, doi: https://doi.org/10.1016/j.ecmx.2020.100041. 
  5. Y. Choi and J. Ahn, "Study on reversible electrolysis characteristic of a planar type SOFC", Journal of Hydrogen and New Energy, Vol. 28, No. 6, 2017, pp. 657-662, doi: https://doi.org/10.7316/KHNES.2017.28.6.657. 
  6. W. Doenitz and R. Schmidberger, "Concepts and design for scaling up high temperature water vapour electrolysis", International Journal of Hydrogen Energy, Vol. 7, No. 4, 1982, pp. 321-330, doi: https://doi.org/10.1016/0360-3199(82)90125-2. 
  7. A. Hauch, S. H. Jensen, S. Ramousse, and M. Mogensen, "Performance and durability of solid oxide electrolysis cells", Journal of The Electrochemical Society, Vol. 153, 2006, pp. A1741, doi: https://doi.org/10.1149/1.2216562. 
  8. C. M. Stoots, J. E. O'Brien, K. Condie, L. Moore-McAteer, G. Housley, J. J. Hartvigsen, and J. S. Herring, "The high-temperature electrolysis integrated laboratory-scale experiment", Nuclear Technology, Vol. 166, No. 1, 2009, pp. 32-4 2, doi: https://doi.org/10.13182/NT09-A6966. 
  9. D. Stolten, "Hydrogen and fuel cells: fundamentals, technologies and applications", Wiley-VCH, Germany, 2008, pp. 227-242.