Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.3.12

Direct Growth of Graphene at Low Temperature for Future Device Applications  

Kim, Bum Jun (SKKU of Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Nasir, Tuqeer (SKKU of Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Choi, Jae-Young (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
Publication Information
Abstract
The development of two-dimensional graphene layers has recently attracted considerable attention because of its tremendous application in various research fields. Semi-metal materials have received significant attention because of their excellent biocompatibility as well as distinct physical, chemical, and mechanical properties. Taking into account the technical importance of graphene in various fields, such as complementary metal-oxide-semiconductor technology, energy-harvesting and -storage devices, biotechnology, electronics, light-emitting diodes, and wearable and flexible applications, it is considered to be a multifunctional component. In this regard, material scientists and researchers have primarily focused on two typical problems: i) direct growth and ii) low-temperature growth of graphene. In this review, we have considered only cold growth of graphene. The review is divided into five sections. Sections 1 and 2 explain the typical characteristics of graphene with a short history and the growth methods adopted, respectively. Graphene's direct growth at low temperatures on a required substrate with a well-established application is then precisely discussed in Sections 3 and 4. Finally, a summary of the review along with future challenges is described in Section 5.
Keywords
Direct growth of graphene; Low-temperature growth of graphene; Chemical vapor deposition; Physical & chemical properties; Multifunctional applications;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. P. Wu, B. Wang, Y. F. Ma, Y. Huang, N. Li, F. Zhang, and Y. S. Chen, "Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films," Nano Res., 3 [9] 661-69 (2010).   DOI
2 N. Li, Z. Y. Wang, K. K. Zhao, Z. J. Shi, Z. N. Gu, and S. K. Xu, "Large Scale Synthesis of N-Doped Multi-Layered Graphene Sheets by Simple Arc-Discharge Method," Carbon, 48 [1] 255-59 (2010).   DOI
3 Y. X. Zhang, X. He, G. M. Zeng, T. Chen, Z. Y. Zhou, H. T. Wang, and W. J. Lu, "Enhanced Photodegradation of Pentachlorophenol by Single and Mixed Nonionic and Anionic Surfactants Using Graphene-$TiO_2$ as Catalyst," Environ. Sci. Pollut. Res. Int., 22 [22] 18211-20 (2015).   DOI
4 A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 183-91 (2007).   DOI
5 C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, and L.-J. Li, "High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation," ACS Nano, 5 [3] 2332-39 (2011).   DOI
6 X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Lett., 9 [12] 4359-63 (2009).   DOI
7 H. J. Song, M. Son, C. Park, H. Lim, M. P. Levendorf, A. W. Tsen, J. Park, and H. C. Choi, "Large Scale Metal-Free Synthesis of Graphene on Sapphire and Transfer-Free Device Fabrication," Nanoscale, 4 [10] 3050-54 (2012).   DOI
8 J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, and M. C. Hersam, "Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers," ACS Nano, 5 [6] 5223-32 (2011).   DOI
9 P.-Y. Teng, C.-C. Lu, K. Akiyama-Hasegawa, Y.-C. Lin, C.-H. Yeh, K. Suenaga, and P.-W. Chiu, "Remote Catalyzation for Direct Formation of Graphene Layers on Oxides," Nano Lett., 12 [3] 1379-84 (2012).   DOI
10 J. Kang, D. Shin, S. Bae, and B. H. Hong, "Graphene Transfer: Key for Applications," Nanoscale, 4 [18] 5527-37 (2012).   DOI
11 Y.-J. Kim, S. J. Kim, M. H. Jung, K. Y. Choi, S. Bae, S.-K. Lee, Y. Lee, D. Shin, B. Lee, H. Shin, M. Choi, K. Park, J- H Ahn, and B. H. Hong, "Low-Temperature Growth and Direct Transfer of Graphene-Graphitic Carbon Films on Flexible Plastic Substrates," Nanotechnology, 23 [34] 344016 (2012).   DOI
12 H.-K. Seo, K. Kim, S.-Y. Min, Y. Lee, C. E. Park, R. Raj, and T.-W. Lee, "Direct Growth of Graphene-Dielectric Bi-Layer Structure on Device Substrates from Si-Based Polymer," 2D Mater., 4 [2] 024001 (2017).   DOI
13 J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, "Scanning Tunnelling Microscopy and Spectroscopy of Ultra-Flat Graphene on Hexagonal Boron Nitride," Nat. Mater., 10 282-85 (2011).   DOI
14 J. Sun, Y. Chen, M. K. Priydarshi, Z. Chen, A. Bachmatiuk, Z. Zou, Z. Chen, X. Song, Y. Gao, and M. H. Ruummeli, "Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications," Nano Lett., 15 [9] 5846-54 (2015).   DOI
15 J.-H. Lee, M.-S. Kim, J.-Y. Lim, S.-H. Jung, S.-G. Kang, H.-J. Shin, J.-Y. Choi, S.-W. Hwang, and D. Whang, "CMOS-Compatible Catalytic Growth of Graphene on a Silicon Dioxide Substrate," Appl. Phys. Lett., 109 [5] 053102 (2016).   DOI
16 A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. Zhang, "Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces," Nano Lett., 10 [5] 1542-48 (2010).   DOI
17 T. Q. Trung and N.-E. Lee, "Materials and Devices for Transparent Stretchable Electronics," J. Mater. Chem. C, 5 [9] 2202-22 (2017).   DOI
18 T. Q. Trung and N. E. Lee, "Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components," Adv. Mater., 29 [3] 1603167 (2017).   DOI
19 M. Son, H. Lim, M. Hong, and H. C. Choi, "Direct Growth of Graphene Pad on Exfoliated Hexagonal Boron Nitride Surface," Nanoscale, 3 [8] 3089-93 (2011).   DOI
20 Q. K. Yu, L.A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, and Y. P. Chen, "Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition," Nat. Mater., 10 443-49 (2011).   DOI
21 G. Williams, B. Seger, and P. V. Kamat, "$TiO_2$-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide," ACS Nano, 2 [7] 1487-91 (2008).   DOI
22 Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite," Nat. Nano., 3 563-68 (2008).   DOI
23 P. W. Sutter, J.-I. Flege, and E. A. Sutter, "Epitaxial Graphene on Ruthenium," Nat. Mater., 7 406-11 (2008).   DOI
24 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and A. N. Marchenkov, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, 312 [5777] 1191-96 (2006).   DOI
25 J. Yamada, Y. Ueda, T. Maruyama, and S. Naritsuka, "Direct Growth of Multilayer Graphene by Precipitation Using W Capping Layer," Jpn. J. Appl. Phys., 55 [10] 100302 (2016).   DOI
26 K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, "Interaction, Growth, and Ordering of Epitaxial Graphene on SiC {0001} Surfaces: A Comparative Photoelectron Spectroscopy Study," Phys. Rev. B, 77 155303 (2008).   DOI
27 J. Hass, W. A. D. Heer, and E. H. Conrad, "The Growth and Morphology of Epitaxial Multilayer Graphene," J. Phys.: Condens. Matter, 20 323202 (2008).   DOI
28 C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, and L.-J. Li, "Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors," ACS Nano, 4 [9] 5285-92 (2010).   DOI
29 A. A. Green and M. C. Hersam, "Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation," Nano Lett., 9 [12] 4031-36 (2009).
30 L. J. Cote, F. Kim, and J. Huang, "Langmuir-Blodgett Assembly of Graphite Oxide Single Layers," J. Am. Chem. Soc., 131 [3] 1043-49 (2008).   DOI
31 D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets," Nat. Nanotechnol., 3 101-5 (2008).   DOI
32 W. Gao, L.B. Alemany, L. Ci, and P. M. Ajayan, "New Insights into the Structure and Reduction of Graphite Oxide," Nat. Chem., 1 403-8 (2009).   DOI
33 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, 457 706-10 (2009).   DOI
34 J. Coraux, A.T. N 'Diaye, C. Busse, and T. Michely, "Structural Coherency of Graphene on Ir(111)," Nano Lett., 8 [2] 565-70 (2008).   DOI
35 Y. Z. Chen, H. Medina, H. W. Tsai, Y. C. Wang, Y. T. Yen, A. Manikandan, and Y. L. Chueh, "Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode," Chem. Mater., 27 [5] 1646-55 (2015).   DOI
36 B. Zhang, W. H. Lee, R. Piner, I. Kholmanov, Y. P. Wu, H. F. Li, H. X. Ji, and R. S. Ruoff, "Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils," ACS Nano, 6 [3] 2471-76 (2012).   DOI
37 J. Jang, M. Son, S. Chung, K. Kim, C. Cho, B. H. Lee, and M. H. Ham, "Low-Temperature-Grown Continuous Graphene Films from Benzene by Chemical Vapor Deposition at Ambient Pressure," Sci. Rep., 5 17955 (2015).
38 L. Jiang, T. C. Niu, X. Q. Lu, H. L. Dong, W. Chen, Y. Q. Liu, W. P. Hu, and D. B. Zhu, "Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction," J. Am. Chem. Soc., 135 [24] 9050-54 (2013).   DOI
39 J. H. Choi, Z. C. Li, P. Cui, X. D. Fan, H. Zhang, C. G. Zeng, and Z. Y. Zhang, "Drastic Reduction in the Growth Temperature of Graphene on Copper via Enhanced London Dispersion Force," Sci. Rep., 3 1925 (2013).   DOI
40 J. Zhang, J. J. Li, Z. L. Wang, X. N. Wang, W. Feng, W. Zheng, W. W. Cao, and P. A. Hu, "Low-Temperature Growth of Large-Area Heteroatom-Doped Graphene Film," Chem. Mater., 26 [7] 2460-66 (2014).   DOI
41 X. Wan, K. Chen, D. Q. Liu, J. Chen, Q. Miao, and J. B. Xu, "High-Quality Large-Area Graphene from Dehydrogenated Polycyclic Aromatic Hydrocarbons," Chem. Mater., 24 [20] 3906-15 (2012).   DOI
42 E. Lee, H. C. Lee, S. B. Jo, H. Lee, N. S. Lee, C. G. Park, S. K. Lee, H. H. Kim, H. Bong, and K. Cho, "Heterogeneous Solid Carbon Source-Assisted Growth of High-Quality Graphene via CVD at Low Temperatures," Adv. Funct. Mater., 26 [4] 562-68 (2016).   DOI
43 Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, "Growth of Graphene from Solid Carbon Sources," Nature, 468 549-52 (2010).   DOI
44 S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes," Nat. Nanotechnol., 5 [8] 574-78 (2010).   DOI
45 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Lett., 9 [1] 30-5 (2008).   DOI
46 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009).   DOI
47 S. Lee, K. Lee, and Z. Zhong, "Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition," Nano Lett., 10 [11] 4702-7 (2010).   DOI
48 K. Yan, H. Peng, Y. Zhou, H. Li, and Z. Liu, "Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition," Nano Lett., 11 [3] 1106-10 (2011).   DOI
49 K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, "A Role for Graphene in Silicon-Based Semiconductor Devices," Nature, 479 338-44 (2011).   DOI
50 Z. Yan, Z. Peng, and J. M. Tour, "Chemical Vapor Deposition of Graphene Single Crystals," Acc. Chem. Res., 47 [4] 1327-37 (2014).   DOI
51 J. Sun, S. Deng, W. Guo, Z. Zhan, J. Deng, C. Xu, X. Fan, K. Xu, W. Guo, and Y. Huang, "Electrochemical Bubbling Transfer of Graphene Using a Polymer Support with Encapsulated Air Gap as Permeation Stopping Layer," J. Nanomater., 2016 51 (2016).
52 R. Addou, A. Dahal, P. Sutter, and M. Batzill, "Monolayer Graphene Growth on Ni(111) by Low Temperature Chemical Vapor Deposition," Appl. Phys. Lett., 100 [2] 021601 (2012).   DOI
53 M. M. Zhu, Z. H. Du, Z. Y. Yin, W. W. Zhou, Z. D. Liu, S. H. Tsang, and E. H. T. Teo, "Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion," ACS Appl. Mater. Interfaces, 8 [1] 502-10 (2016).   DOI
54 K. Gharagozloo-Hubmann, N. S. Muller, M. Giersig, C. Lotze, K. J. Franke, and S. Reicht, "Requirement on Aromatic Precursor for Graphene Formation," J. Phys. Chem. C, 120 [18] 9821-25 (2016).   DOI
55 M. Marschall, J. Reichert, K. Seufert, W. Auwarter, F. Klappenberger, A. Weber-Bargioni, S. Klyatskaya, G. Zoppellaro, A. Nefedov, T. Strunskus, C. Woll, M. Ruben, and J. V. Barth, "Supramolecular Organization and Chiral Resolution of p-Terphenyl-m-Dicarbonitrile on the Ag(111) Surface," Chemphyschem, 11 [7] 1446-51 (2010).   DOI
56 C. Klink, I. Stensgaard, F. Besenbacher, and E. Laegsgaard, "An Stm Study of Carbon-Induced Structures on Ni(111) - Evidence for a Carbidic-Phase Clock Reconstruction," Surf. Sci., 342 [1-3] 250-60 (1995).   DOI
57 J. Lahiri, T. Miller, L. Adamska, I. I. Oleynik, and M. Batzill, "Graphene Growth on Ni(111) by Transformation of a Surface Carbide," Nano Lett., 11 [2] 518-22 (2011).   DOI
58 L. L. Patera, C. Africh, R. S. Weatherup, R. Blume, S. Bhardwaj, C. Castellarin-Cudia, A. Knop-Gericke, R. Schloegl, G. Comelli, S. Hofmann, and C. Cepek, "In Situ Observations of the Atomistic Mechanisms of Ni Catalyzed Low Temperature Graphene Growth," ACS Nano, 7 [9] 7901-12 (2013).   DOI
59 S. Zhou, J. L. Xu, Y. B. Xiao, N. Zhao, and C. P. Wong, "Low-Temperature Ni Particle-Templated Chemical Vapor Deposition Growth of Curved Graphene for Supercapacitor Applications," Nano Energy, 13 458-66 (2015).   DOI
60 C. T. Cherian, F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, and B. Ozyilmaz, "'Bubble- Free' Electrochemical Delamination of CVD Graphene Films," Small, 11 [2] 189-94 (2015).   DOI
61 H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, "The Role of Defects and Doping in 2D Graphene Sheets and 1D Nanoribbons," Rep. Prog. Phys., 75 [6] 062501 (2012).   DOI
62 D. Mafra, T. Ming, and J. Kong, "Facile Graphene Transfer Directly to Target Substrates with a Reusable Metal Catalyst," Nanoscale, 7 [36] 14807-12 (2015).   DOI
63 Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, "Electrochemical Delamination of CVD-Grown Graphene Film: toward the Recyclable Use of Copper Catalyst," ACS Nano, 5 [12] 9927-33 (2011).   DOI
64 Y. Chen, X. L. Gong, and J. G. Gai, "Progress and Challenges in Transfer of Large-Area Graphene Films," Adv. Sci., 3 [8] 1500343 (2016).   DOI
65 R. Steingruber, M. Ferstl, and W. Pilz, "Micro-Optical Elements Fabricated by Electron-Beam Lithography and Dry Etching Technique Using Top Conductive Coatings," Microelectron. Eng., 57 285-89 (2001).
66 T. Jiao, J. Liu, D. Wei, Y. Feng, X. Song, H. Shi, S. Jia, W. Sun, and C. Du, "Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells," ACS Appl. Mater. Interfaces, 7 [36] 20179-83 (2015).   DOI
67 X. Song, T. Sun, J. Yang, L. Yu, D. Wei, L. Fang, B. Lu, C. Du, and D. Wei, "Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors," ACS Appl. Mater. Interfaces, 8 [26] 16869-75 (2016).   DOI
68 S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers," Nat. Mater., 9 859-64 (2010).   DOI
69 R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, "The Mechanics of Graphene nanocomposites: A Review," Compos. Sci. Technol., 72 [12] 1459-76 (2012).   DOI
70 H. Kim, A. A. Abdala, and C. W. Macosko, "Graphene/ Polymer Nanocomposites," Macromolecules, 43 [16] 6515-30 (2010).   DOI
71 J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Electromechanical Resonators from Graphene Sheets," Science, 315 [5811] 490-93 (2007).   DOI
72 M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene," Chem. Rev., 110 [1] 132-45 (2010).   DOI
73 S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, "Direct Synthesis of Graphene on $SiO_2$ Substrates by Chemical Vapor Deposition," CrystEngComm, 15 [10] 1840-44 (2013).   DOI
74 C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, and F.-R. Chen, "Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition," Nano Lett., 11 [9] 3612-16 (2011).   DOI
75 Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, "Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel," ACS Nano, 5 [10] 8241-47 (2011).   DOI
76 M. Min, S. Seo, Y. Yoon, K. Cho, S. M. Lee, T. Lee, and H. Lee, "Catalyst-Free Bottom-Up Growth of Graphene Nanofeatures along with Molecular Templates on Dielectric Substrates," Nanoscale, 8 [38] 17022-29 (2016).   DOI
77 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The Electronic Properties of Graphene," Rev. Mod. Phys., 81 109-62 (2009).   DOI
78 F. Schwierz, "Graphene Transistors," Nat. Nanotechnol., 5 487-96 (2010).   DOI
79 Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, and P. M. Ajayan, "Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers," Nano Lett., 11 [5] 2032-37 (2011).   DOI
80 P. Thanh Trung, J. Campos-Delgado, F. Joucken, J.-F. Colomer, B. Hackens, J.-P. Raskin, C. N. Santos, and S. Robert, "Direct Growth of Graphene on Si (111)," J. Appl. Phys., 115 [22] 223704 (2014).   DOI
81 J. Kwak, J. H. Chu, J.-K. Choi, S.-D. Park, H. Go, S. Y. Kim, K. Park, S.-D. Kim, Y.-W. Kim, and E. Yoon, "Near Room-Temperature Synthesis of Transfer-Free Graphene Films," Nat. Commun., 3 645 (2012).   DOI
82 H. Bi, S. Sun, F. Huang, X. Xie, and M. Jiang, "Direct Growth of Few-Layer Graphene Films on $SiO_2$ Substrates and Their Photovoltaic Applications," J. Mater. Chem., 22 [2] 411-16 (2012).   DOI
83 X. C. Dong, P. Wang, W. J. Fang, C. Y. Su, Y. H. Chen, L. J. Li, W. Huang, and P. Chen, "Growth of Large-Sized Graphene Thin-Films by Liquid Precursor-Based Chemical Vapor Deposition under Atmospheric Pressure," Carbon, 49 [11] 3672-78 (2011).   DOI
84 H. Ago, Y. Ogawa, M. Tsuji, S. Mizuno, and H. Hibino, "Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene," J. Phys. Chem. Lett., 3 [16] 2228-36 (2012).   DOI
85 X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009).   DOI
86 X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, "Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper," J. Am. Chem. Soc., 133 [9] 2816-19 (2011).   DOI
87 A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek, and M. Siaj, "Chemical Vapor Deposition Synthesis of Graphene on Copper with Methanol, Ethanol, and Propanol Precursors," Carbon, 49 [13] 4204-10 (2011).   DOI
88 A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly, and P. M. Ajayan, "Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films," Chem. Mater., 22 [11] 3457-61 (2010).   DOI
89 S. Park and R. S. Ruoff, "Chemical Methods for the Production of Graphenes," Nat. Nanotechnol., 4 [4] 217-24 (2009).   DOI
90 D. A. C. Brownson, D. K. Kampouris, and C. E. Banks, "An Overview of Graphene in Energy Production and Storage Applications," J. Power Sources, 196 [11] 4873-85 (2011).   DOI
91 S. P. Pang, J. M. Englert, H. N. Tsao, Y. Hernandez, A. Hirsch, X. L. Feng, and K. Mullen, "Extrinsic Corrugation-Assisted Mechanical Exfoliation of Monolayer Graphene," Adv. Mater., 22 [47] 5374-77 (2010).   DOI
92 T. L. Yoon, T. L. Lim, T. K. Min, S. H. Hung, N. Jakse, and S. K. Lai, "Epitaxial Growth of Graphene on 6H-Silicon Carbide Substrate by Simulated Annealing Method," J. Chem. Phys., 139 [20] 204702 (2013).   DOI
93 S. W. Poon, W. Chen, E. S. Tok, and A. T. S. Wee, "Probing Epitaxial Growth of Graphene on Silicon Carbide by Metal Decoration," Appl. Phys. Lett., 92 [10] 104102 (2008).   DOI
94 W.S. Kim, S. Y. Moon, N. H. Park, H. Huh, K. B. Shim, and H. Ham, "Electrical and Structural Feature of Monolayer Graphene Produced by Pulse Current Unzipping and Microwave Exfoliation of Carbon Nanotubes," Chem. Mater., 23 [4] 940-44 (2011).   DOI
95 T. Ciuk, P. Caban, and W. Strupinski, "Charge Carrier Concentration and Offset Voltage in Quasi-Free-Standing Monolayer Chemical Vapor Deposition Graphene on SiC," Carbon, 101 431-38 (2016).   DOI
96 Y. G. Yao, Z. Li, Z. Y. Lin, K. S. Moon, J. Agar, and C. P. Wong, "Controlled Growth of Multilayer, Few-Layer, and Single-Layer Graphene on Metal Substrates," J. Phys. Chem. C, 115 [13] 5232-38 (2011).   DOI
97 Z. C. Li, P. Wu, C. X. Wang, X. D. Fan, W. H. Zhang, X. F. Zhai, C. G. Zeng, Z. Y. Li, J. L. Yang, and J. G. Hou, "Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources," ACS Nano, 5 [4] 3385-90 (2011).   DOI
98 H. Kim, I. Song, C. Park, M. Son, M. Hong, Y. Kim, J. S. Kim, H.-J. Shin, J. Baik, and H. C. Choi, "Copper-Vapor-Assisted Chemical Vapor Deposition for High-Quality and Metal-Free Single-Layer Graphene on Amorphous $SiO_2$ Substrate," ACS Nano, 7 [8] 6575-82 (2013).   DOI
99 J. Li, C. Shen, Y. Que, Y. Tian, L. Jiang, D. Bao, Y. Wang, S. Du, and H.-J. Gao, "Copper Vapor-Assisted Growth of Hexagonal Graphene Domains on Silica Islands," Appl. Phys. Lett., 109 [2] 023106 (2016).   DOI
100 A. Sinitskii, A. A. Fursina, D. V. Kosynkin, A. L. Higginbotham, D. Natelson, and J. M. Tour, "Electronic Transport in Monolayer Graphene Nanoribbons Produced by Chemical Unzipping of Carbon Nanotubes," Appl. Phys. Lett., 95 [25] 253108 (2009).   DOI
101 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene Photonics and Optoelectronics," Nat. Photonics, 4 611-22 (2010).   DOI
102 H. J. Shin, W. M. Choi, S. M. Yoon, G. H. Han, Y. S. Woo, E. S. Kim, S. J. Chae, X. S. Li, A. Benayad, D. D. Loc, F. Gunes, Y. H. Lee, and J. Y. Choi, "Transfer-Free Growth of Few-Layer Graphene by Self-Assembled Monolayers," Adv. Mater., 23 [38] 4392-97 (2011).   DOI
103 M. H. Rummeli, A. Bachmatiuk, A. Scott, F. Borrnert, J. H. Warner, V. Hoffman, J.-H. Lin, G. Cuniberti, and B. Buchner, "Direct Low-Temperature Nanographene CVD Synthesis over a Dielectric Insulator," ACS Nano, 4 [7] 4206-10 (2010).   DOI
104 L. Zhang, Z. Shi, Y. Wang, R. Yang, D. Shi, and G. Zhang, "Catalyst-Free Growth of Nanographene Films on Various Substrates," Nano Res., 4 [3] 315-21 (2011).   DOI
105 J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang, Y. Xue, D. Geng, D. Wang, G. Yu, and Y. Liu, "Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates," J. Am. Chem. Soc., 133 [4] 17548-51 (2011).   DOI
106 M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, "Transfer-Free Batch Fabrication of Single Layer Graphene Transistors," Nano Lett., 9 [12] 4479-83 (2009).   DOI
107 S.-J. Byun, H. Lim, G.-Y. Shin, T.-H. Han, S. H. Oh, J.-H. Ahn, H. C. Choi, and T.-W. Lee, "Graphenes Converted from Polymers," J. Phys. Chem. Lett., 2 [5] 493-97 (2011).   DOI
108 C. S. Lee, L. Baraton, Z. He, J.-L. Maurice, M. Chaigneau, D. Pribat, and C. S. Cojocaru, "Dual Graphene films growth process based on plasma-assisted chemical vapor deposition, in: SPIE NanoScience+ Engineering, International Society for Optics and Photonics, 2010, pp. 77610P-77610P-77617.
109 G. Yang, H.-Y. Kim, S. Jang, and J. Kim, "Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers," ACS Appl. Mater. Interfaces, 8 [40] 27115-21 (2016).   DOI
110 S. Tang, H. Wang, H. S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, and F. Huang, "Silane-Catalysed Fast Growth of Large Single-Crystalline Graphene on Hexagonal Boron Nitride," Nat. Commun., 6 6499 (2015).   DOI
111 H. Wang, Y. Zhou, D. Wu, L. Liao, S. L. Zhao, H. L. Peng, and Z. F. Liu, "Synthesis of Boron-Doped Graphene Monolayers Using the Sole Solid Feedstock by Chemical Vapor Deposition," Small, 9 [8] 1316-20 (2013).   DOI
112 R. Mehta, S. Chugh, and Z. Chen, "Transfer-Free Multi-Layer Graphene as a Diffusion Barrier," Nanoscale, 9 [5] 1827-33 (2017).   DOI
113 R. Munoz, C. Munuera, J. Martínez, J. Azpeitia, C. Gomez-Aleixandre, and M. Garcia-Hernandez, "Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition," 2D Mater., 4 015009 (2016).   DOI
114 J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, and L. Fu, "A Self Terminating Confinement Approach for Large Area Uniform Monolayer Graphene Directly over $Si/SiO_x$ by Chemical Vapor Deposition," ACS Nano, 11 [2] 1946-56 (2017).   DOI
115 C. Zhao, B. Deng, G. C. Chen, B. Lei, H. Hua, H. L. Peng, and Z. M. Yan, "Large-Area Chemical Vapor Deposition-Grown Monolayer Graphene-Wrapped Silver Nanowires for Broad-Spectrum and Robust Antimicrobial Coating," Nano Res., 9 [4] 963-73 (2016).   DOI
116 M. S. Rosmi, S. M. Shinde, N. D. A. Rahman, A. Thangaraja, S. Sharma, K. P. Sharma, Y. Yaakob, R. K. Vishwakarma, S. A. Bakar, G. Kalita, H. Ohtani, and M. Tanemura, "Synthesis of Uniform Monolayer Graphene on Re-Solidified Copper from Waste Chicken Fat by Low Pressure Chemical Vapor Deposition," Mater. Res. Bull., 83 573-80 (2016).   DOI
117 J. W. Suk, W. H. Lee, T. J. Kang, and R. D. Piner, "Transfer of Chemical Vapor Deposition-Grown Monolayer Graphene by Alkane Hydrocarbon," Sci. Adv. Mater., 8 [1] 144-47 (2016).   DOI
118 H. J. Tan, Y. Fan, Y. M. Rong, B. Porter, C. S. Lau, Y. Q. Zhou, Z. Y. He, S. S. Wang, H. Bhaskaran, and J. H. Warner, "Doping Graphene Transistors Using Vertical Stacked Monolayer $WS_2$ Heterostructures Grown by Chemical Vapor Deposition," ACS Appl. Mater. Interfaces, 8 [3] 1644-52 (2016).   DOI
119 C. C. Chen, C. H. Yeh, C. C. Chang, and J. J. Ho, "Conversion of $CO_2$ and $C_2H_6$ to Propanoic Acid on an Iridium- Modified Graphene Oxide Surface: Quantum-Chemical Investigation," Ind. Eng. Chem. Res., 54 [5] 1539-46 (2015).   DOI
120 X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Lett., 9 [12] 4268-72 (2009).   DOI
121 Z. Y. Jiang and L. F. Yan, "Conversion of Glucose to Valuable Platform Chemicals over Graphene Solid Acid Catayst," Chin. J. Chem. Phys., 28 [2] 230-34 (2015).   DOI
122 B. S. Shen, J. J. Ding, X. B. Yan, W. J. Feng, J. Li, and Q. J. Xue, "Influence of Different Buffer Gases on Synthesis of Few-Layered Graphene by Arc Discharge Method," Appl. Surf. Sci., 258 [10] 4523-31 (2012).   DOI