• Title/Summary/Keyword: low-temperature oxide

Search Result 1,088, Processing Time 0.032 seconds

Simultaneous Removal of $NO_x$ and $SO_2$ through the Combination of Sodium Chlorite Powder and Carbon-based Catalyst at Low Temperature ($NaClO_2(s)$와 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$$SO_2$ 동시 제거)

  • Byun, Young-Chul;Lee, Ki-Man;Koh, Dong-Jun;Shin, Dong-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • NO oxidation is an important prerequisite step to assist the selective catalytic reduction (SCR) at low temperatures ($<200^{\circ}C$). Therefore, we conducted the lab- and bench-scales experiments appling the sodium chlorite powder ($NaClO_2(s)$) for the oxidation of NO to $NO_2$ and the carbon-based catalyst for the reduction of $NO_x$ and $SO_2$; the lab- and bench-scales experiments were conducted in laboratory and iron-ore sintering plant, respectively. In the lab-scale experiment, known concentrations of $NO_x$ (200 ppm), $SO_2$ (75 ppm), $H_2O$ (10%) and $NH_3$ (400 ppm) in 2.6 L/min were introduced into a packed-bed reactor containing $NaClO_2(s)$, then gases produced by the reaction with $NaClO_2(s)$ were fed into the carbon-based catalyst (space velocity = $2,000hr^{-1}$) at $130^{\circ}C$. In the bench-scale experiment, flue gases of $50Nm^3/hr$ containing 120 ppm NO and 150 ppm $SO_2$ were taken out from the duct of iron-ore sintering plant, then introduced into the flow reactor; $NaClO_2(s)$ were injected into the flow reactor using a screw feeder. Gases produced by the reaction with $NaClO_2(s)$ were introduced into the carbon-based catalyst (space velocity = $1,000hr^{-1}$). Results have shown that, in both lab- and bench-scales experiments, NO was oxidized to $NO_2$ by $NaClO_2(s)$. In addition, above 90% of $NO_x$ and $SO_2$ removal were obtained at the carbon-based catalyst. These results lead us to suggest that the combination of $NaClO_2(s)$ with the carbon-based catalyst has the potential to achieve the simultaneous removal of $NO_x$ and $SO_2$ at low temperature ($<200^{\circ}C$).

Influence of N Fertilization Level, Rainfall, and Temperature on the Emission of N2O in the Jeju Black Volcanic Ash Soil with Carrot Cultivation (당근 재배 화산회토양에서 질소시비 수준 및 강우, 온도 환경 변화에 따른 N2O 배출 특성)

  • Yang, Sang-Ho;Kang, Ho-Jun;Lee, Shin-Chan;Oh, Han-Jun;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.459-465
    • /
    • 2012
  • This study was conducted to obtain investigated characteristic factors which has an influence on nitrous oxide ($N_2O$) emissions related to the environment change of nitrogen application level, rainfall and temperature. It was done by the carrot cultivation at black volcanic ashes soil in the experimental field of Jeju Special Self-governing Province Agricultural Research and Extension Services from 2010 to 2011. During the carrot cultivation period, the more amount of nitrogen fertilizer applied, the more amount of $N_2O$ emissions were released. Generally $N_2O$ emissions were so deeply released to climate as that in the first and middle of cultivation with heavy rainfall released amount is high, otherwise it was released very low at the end of cultivation and drought season. $N_2O$ emissions type was considered to relate with the rainfall pattern and soil water content. We obtained the result correlated with $N_2O$ emissions, in 2010, as the soil water and soil temperature were significant to $0.5718^{**}$ ($r$) and $0.4908^{**}$ ($r$) respectively, but soil EC was not significant to 0.2704 ($r$). In 2011, soil water was significant to $0.3394^*$ ($r$), but soil temperature and soil EC were not significant to 0.2138 ($r$) and 0.2462 ($r$) respectively. Also, $NO_3$-N and soil nitrogen ($NO_3-N+NH_4-N$) were not significant to 0.0575 ($r$) and 0.0787 ($r$) respectively. During the carrot cultivation period, the average emissions factor released by the nitrogen fertilizer application for 2 years was presumed to be 0.0025 $N_2O$-N kg / N kg. This factor was 4 times than the IPCC (0.0100 $N_2O$-N kg / N kg) factor.

Influence of N Fertilization Level, Rainfall, and Temperature on the Emission of N2O in the Jeju Black Volcanic Ash Soil with Soybean Cultivation (콩 재배 화산회토양에서 질소시비 수준 및 강우, 온도 환경 변화에 따른 아산화질소 배출 특성)

  • Yang, Sang-Ho;Kang, Ho-Jun;Lee, Shin-Chan;Oh, Han-Jun;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.451-458
    • /
    • 2012
  • This study was conducted to investigate the characteristic factors which have been influenced on nitrous oxide ($N_2O$) emissions related to the environment change of nitrogen application level, rainfall and temperature during the soybean cultivation at black volcanic ash soil from 2010 to 2011. During the soybean cultivation, the more amount of nitrogen fertilizer applied, $N_2O$ emissions amounts were released much. $N_2O$ emissions with the cultivation time were released much at the first and middle of cultivation with heavy rainfall, but it was released very low until the end of cultivation and drought season. $N_2O$ emissions mainly were influenced by the rainfall and soil water content. The correlation ($r$) with $N_2O$ emissions, soil water, soil temperature and soil EC in 2010 were very significant at $0.4591^{**}$, $0.6312^{**}$ and $0.3691^{**}$ respectively. In 2011, soil water was very significant at $0.4821^{**}$, but soil temperature and soil EC were not significant at 0.1646 and 0.1543 respectively. Also, $NO_3$-N and soil nitrogen ($NO_3-N+NO_4-N$) were very significant at $0.6902^{**}$ and $0.6277^*$ respectively, but $NO_4$-N was not significant at 0.1775. During the soybean cultivation, the average emissions factor of 2 years released by the nitrogen fertilizer application was presumed to be 0.0202 ($N_2O$-N kg $N^{-1}\;kg^{-1}$). This factor was higher about 2.8 and 2 times than the Japan's (0.0073 $N_2O$-N kg $N^{-1}\;kg^{-1}$) value and 2006 IPCC guideline default value (0.0100 $N_2O$-N kg $N^{-1}\;kg^{-1}$) respectively.

Influence of N Fertilization Level, Rainfall and Temperature on the Emission of N2O in the Jeju Black Volcanic Ash Soil with Potato Cultivation (감자 재배 화산회토양에서 질소시비 수준, 강우 및 온도 환경 변화에 따른 아산화질소 배출 특성)

  • Yang, Sang-Ho;Kang, Ho-Jun;Lee, Shin-Chan;Oh, Han-Jun;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.544-550
    • /
    • 2012
  • This study was conducted to investigate the characteristic factors which have been influenced on nitrous oxide ($N_2O$) emissions related to the environment change of nitrogen application level, rainfall and temperature during the potato cultivation at black volcanic ash soil from 2010 to 2011. During the potato cultivation, the more amount of nitrogen fertilizer applied, $N_2O$ emissions amounts were released much. $N_2O$ emissions with the cultivation time were released much at the first and middle of cultivation with heavy rainfall, but it was released very low until the end of cultivation and drought season. $N_2O$ emissions mainly were influenced by the rainfall and soil water content. The correlation (r) with $N_2O$ emissions, soil wate, soil temperature in 2010 were very significant at $0.6251^{**}$ and $0.6082^{**}$ respectively, but soil EC was not significant to 0.10824. In 2011, soil temperature was very significant at $0.4879^{**}$, but soil water and soil EC were not significant at 0.0468 and 0.0400 respectively. Also, $NH_4$-N was very significant at $0.7476^{**}$, but $NO_3$-N and soil nitrogen ($NO_3-N+NH_4-N$) were not significant at 0.0843 and 0.1797, respectively. During the potato cultivation period, the average emissions factor of 2 years released by the nitrogen fertilizer application was presumed to be 0.0040 ($N_2O-N\;kg\;N^{-1}\;kg^{-1}$). This factor was lower about 2.5 times than the IPCC guideline default value (0.0100 $N_2O-N\;kg\;N^{-1}\;kg^{-1}$).

Isolation of High Yielding Alkaline Protease Mutants of Vibrio metschnikovii Strain RH530 and Detergency Properties of Enzyme

  • Chung, So-Sun;Shin, Yong-Uk;Kim, Hee-Jin;Jin, Ghee-Hong;Rho, Hyune-Mo;Lee, Hyune-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.349-354
    • /
    • 2000
  • Abstract A facultative alkalophilic gram-negative Vibrio metschnikovii strain RH530, isolated from the wastewater, produced several alkaline proteases (VAP) including six alkaline serine proteases and a metalloprotease. From this strain, high yielding YAP mutants were isolated by NTG treatment. The isolated mutant KS1 showed nine times more activity than the wild-type after optimization of the culture media. The production was regulated by catabolite repression when glucose was added to the medium. The effects of several organic nitrogen sources on the production of the YAP were investigated to avoid catabolite repression. The combination of 4% wheat gluten meal (WGM), 1.5% cotton seed flour (eSF), and 5% soybean meal (SBM) resulted in the best production when supplemented with 1% NaCl. The YAP showed a resistance to surfactants such as $sodium-{\alpha}-olefin$ sulfonate (AOS), polyoxy ethylene oxide (POE), and sodium dodecyl sulfate (SDS), yet not to linear alkylbenzene sulfonate (LAS). However, the activity of the YAP was restored completely when incubated with LAS in the presence of POE or $Na_2SO_4$. The YAP was stable in a liquid laundry detergent containing 6.6% SLES (sodium lauryl ether sulfate), 6.6% LAS, 19.8% POE, and stabilizing agents for more than two weeks at $40^{\circ}C$, but the stability was sharply decreased even after 1 day when incubated at $60^{\circ}C$. A washing performance test with the YAP exhibited it to be a good washing power by showing 51 % and 60% activity at $25^{\circ}C{\;}and{\;}40^{\circ}C$, respectively, thereby indicating that the YAP also has a good detergency at a low temperature. All the results suggest that the YAP produced from the mutant strain KSI has suitable properties for use in laundry detergents.rgents.

  • PDF

Improved Degradation Characteristics in n-TFT of Novel Structure using Hydrogenated Poly-Silicon under Low Temperature (낮은 온도 하에서 수소처리 시킨 다결정 실리콘을 사용한 새로운 구조의 n-TFT에서 개선된 열화특성)

  • Song, Jae-Ryul;Lee, Jong-Hyung;Han, Dae-Hyun;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.105-110
    • /
    • 2008
  • We have proposed a new structure of poly-silicon thin film transistor(TFT) which was fabricated the LDD region using doping oxide with graded spacer by etching shape retio. The devices of n-channel poly-si TFT's hydrogenated by $H_2$ and $HT_2$/plasma processes are fabricated for the devices reliability. We have biased the devices under the gate voltage stress conditions of maximum leakage current. The parametric characteristics caused by gate voltage stress conditions in hydrogenated devices are investigated by measuring /analyzing the drain current, leakage current, threshold voltage($V_{th}$), sub-threshold slope(S) and transconductance($G_m$) values. As a analyzed results of characteristics parameters, the degradation characteristics in hydrogenated n-channel polysilicon TFT's are mainly caused by the enhancement of dangling bonds at the poly-Si/$SiO_2$ interface and the poly-Si Brain boundary due to dissolution of Si-H bonds. The structure of novel proposed poly-Si TFT's are the simplity of the fabrication process steps and the decrease of leakage current by reduced lateral electric field near the drain region.

  • PDF

Fabrication of 8YSZ-$Al_2O_3$ solid oxide full cell (SOFC) electrolyte by a spark plasma sintering method (방전 플라즈마 소결법을 이용한 8YSZ-$Al_2O_3$ 고체 산화물 연료전지 전해질 제조)

  • Kim Jae Kwang;Choi Bong Geun;Yang Jae Kyo;Choa Yong Ho;Shim Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.16-20
    • /
    • 2005
  • In order to improve electrical conductivity and mechanical properties of 8YSZ SOFC electrolyte material, we used Al₂O₃ as an additive and applied the spark plasma sintering (SPS) method. The sintered bodies were densified above 96 % of theoretical density at 1200℃ and possessed microstructures composed of homogeneous grains less than 1 ㎛ in size. The addition of Al₂O₃ improved fracture toughness and bending strength by inhibiting grain growth of 8YSZ and increased total ionic conductivity because grain interior conductivity appeared to remain constant and grain boundary conductivity increased. It was assumed that the dissolution of Al₂O₃ into 8YSZ which was inevitable problem at commercial sintering method was effectively prohibited by the SPS technique with a relatively low sintering temperature and the reaction between Al₂O₃ and SiO₂ present at grain boundary to produce the crystalline Al/sub 2-x/Si/sub l-y/O/sub 5/ phase, resulting in the increase of grain boundary conductivity.

SOI wafer formation by ion-cut process and its characterization (Ion-cut에 의한 SOI웨이퍼 제조 및 특성조사)

  • Woo H-J;Choi H-W;Bae Y-H;Choi W-B
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • The silicon-on-insulator (SOI) wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by SRIM simulation that 65keV proton implantation is required for a SOI wafer (200nm SOI, 400nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the $6\~9\times10^{16}\;H^+/cm^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. Direct wafer bonding is performed by joining two wafers together after creating hydrophilic surfaces by a modified RCA cleaning, and IR inspection is followed to ensure a void free bonding. The wafer splitting was accomplished by annealing at the predetermined optimum condition, and high temperature annealing was then performed at $1,100^{\circ}C$ for 60 minutes to stabilize the bonding interface. TEM observation revealed no detectable defect at the SOI structure, and the interface trap charge density at the upper interface of the BOX was measured to be low enough to keep 'thermal' quality.

Characterization of Al-Doped ZnO Thin Film Grown on Buffer Layer with RF Magnetron Sputtering Method (버퍼 층을 이용한 RF 마그네트론 스퍼터 방법에 의한 Al:ZnO 박막의 성장)

  • No, Young-Soo;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.213-220
    • /
    • 2009
  • The optimal condition of low temperature deposition of transparent conductive Al-doped zinc oxide (AZO) films is studied by RF magnetron sputtering method. To achieve enhanced-electrical property and good crystallites quality, we tried to deposit on glass using a two-step growth process. This process was to deposit AZO buffer layer with optimal growth condition on glass in-situ state. The AZO film grown at rf 120 W on buffer layer prepared at RF $50{\sim}60\;W$ shows the electrical resistivity $3.9{\times}10^{-4}{\Omega}cm$, Carrier concentration $1.22{\times}10^{21}/cm^3$, and mobility $9.9\;cm^2/Vs$ in these results, The crystallinity of AZO film on buffer layer was similar to that of AZO film on glass with no buffer later but the electrical properties of the AZO film were 30% improved than that of the AZO film with no buffer layer. Therefore, the cause of enhanced electrical properties was explained to be dependent on degree of crystallization and on buffer layer's compressive stress by variation of $Ar^+$ ion impinging energy.

Characteristics of Low Dielectric Constant SiOF Thin Films with Post Plasma Treatment Time (플라즈마 후처리 시간에 따른 저유전율 SiOF 박막의 특성)

  • Lee, Seok Hyeong;Park, Jong Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.267-267
    • /
    • 1998
  • The fluorine doped silicon oxide (SiOF) intermetal dielectric (IMD) films have been of interest due to their lower dielectric constant and compatibility with existing process tools. However instability issues related to bond and increasing dielectric constant to water absorption when the SiOF films was exposured to atmospheric ambient. Therefore, the purpose of this research is to study the effect of post oxygen plasma treatment on the resistance of moisture absorption and reliability of SiOF film. Improvement of moisture absorption resistance of SiOF film is due to the forming of thin SiO₂layer at the SiOF film surface. It is thought that the main effect of the improvement of moisture absorption resistance was densification of the top layer and reduction in the number of Si-F bonds that tend to associate with OH bonds. However, the dielectric constant was increased when plasma treatment time is above 5 min. In this study, therefore, it is thought that the proper plasma treatment time is 3 min when plasma treatment condition is 700 W of microwave power, 3 mTorr of process pressure and 300℃ of substrate temperature.