• Title/Summary/Keyword: low thermal process

Search Result 1,045, Processing Time 0.029 seconds

Numerical and Experimental Investigation of the Heating Process of Glass Thermal Slumping

  • Zhao, Dachun;Liu, Peng;He, Lingping;Chen, Bo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.314-320
    • /
    • 2016
  • The glass thermal forming process provides a high volume, low cost approach to producing aspherical reflectors for x-ray optics. Thin glass sheets are shaped into mirror segments by replicating the mold shape at high temperature. Heating parameters in the glass thermal slumping process are crucial to improve surface quality of the formed glass. In this research, the heating process of a thermal slumping glass sheet on a concave parabolic mold was simulated with the finite-element method (FEM) to investigate the effects of heating rate and soaking temperature. Based on the optimized heating conditions, glass samples 0.5 mm thick were formed in a furnace with a steel concave parabolic mold. The figure errors of the formed glass were measured and discussed in detail. It was found that the formed glass was not fully slumped at the edges, and should be trimmed to achieve better surface deviation. The root-mean-square (RMS) deviation and peak-valley (PV) deviation between formed glass and mold along the axial direction were 2.3 μm and 4.7 μm respectively.

Fabrication of Functional ZnO Nano-particles Dispersion Resin Pattern Through Thermal Imprinting Process (ZnO 나노 입자 분산 레진의 thermal imprinting 공정을 통한 기능성 패턴 제작)

  • Kwon, Moo-Hyun;Lee, Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1419-1424
    • /
    • 2011
  • Nanoimprint lithography is a next generation lithography technology, which enables to fabricate nano to micron-scale patterns through simple and low cost process. Nanoimprint lithography has been applied in various industry fields such as light emitting diodes, solar cells and display. Functional patterns, including anti-reflection moth-eye pattern, photonic crystal pattern, fabricated by nanoimprint lithography are used to improve overall efficiency of devices in that fields. For these reasons, in this study, sub-micron-scaled functional patterns were directly fabricated on Si and glass substrates by thermal imprinting process using ZnO nano-particles dispersion resin. Through the thermal imprinting process, arrays of sub-micron-scaled pillar and hole patterns were successfully fabricated on the Si and glass substrates. And then, the topography, components and optical property of the imprinted ZnO nano-particles/resin patterns are characterized by Scanning Electron Microscope, Energy-dispersive X-ray spectroscopy and UV-vis spectrometer, respectively.

Non-thermal Plasma for Air Pollution Control Technology (저온 플라즈마 이용 대기환경설비기술)

  • Song, Young-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2006
  • Non-thermal plasma technology for air pollution control, which are NOx, SOx, VOCs, soot, etc., is reviewed. In the early parts of the paper, generation of non-thermal plasma and plasma chemical process are introduced to provide an appropriate plasma condition (electron energy density) for treating air pollutions. Recent results on numerical simulation, optical diagnostics, and gas treatment are provided to characterize an optimal design of plasma generation and plasma chemical process. These data are also helpful to understand unique features of non-thermal plasma process that is achieved with relatively low temperature conditions, i.e. low enthalpy conditions of the treated gas molecules. In the later parts of the paper, several examples of recently developed non-thermal plasma techniques are illustrated, in which technical and economical assessments of the present techniques are provided.

Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator (복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석)

  • 정재한;박기훈;박훈철;윤광준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

Thermal Design of High Power Semiconductor Using Insulated Metal Substrate (Insulated Metal Substrate를 사용한 고출력 전력 반도체 방열설계)

  • Bongmin Jeong;Aesun Oh;Sunae Kim;Gawon Lee;Hyuncheol Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Today, the importance of power semiconductors continues to increase due to serious environmental pollution and the importance of energy. Particularly, SiC-MOSFET, which is one of the wide bandgap (WBG) devices, has excellent high voltage characteristics and is very important. However, since the electrical properties of SiC-MOSFET are heatsensitive, thermal management through a package is necessary. In this paper, we propose an insulated metal substrate (IMS) method rather than a direct bonded copper (DBC) substrate method used in conventional power semiconductors. IMS is easier to process than DBC and has a high coefficient of thermal expansion (CTE), which is excellent in terms of cost and reliability. Although the thermal conductivity of the dielectric film, which is an insulating layer of IMS, is low, the low thermal conductivity can be sufficiently overcome by allowing a process to be very thin. Electric-thermal co-simulation was carried out in this study to confirm this, and DBC substrate and IMS were manufactured and experimented for verification.

Thermal dehydration tests of FLiNaK salt for thermal-hydraulic experiments

  • Shuai Che;Sheng Zhang;Adam Burak;Xiaodong Sun
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1091-1099
    • /
    • 2024
  • Fluoride-salt-cooled High-temperature Reactor (FHR) is a promising nuclear reactor technology. Among many challenges presented by the molten fluoride salts is the corrosion of salt-facing structural components. Higher moisture contents, in the FLiNaK (LiF-NaF-KF, 46.5-11.5-42 mol%) salt, aggravate intergranular corrosion and pitting for the given alloys. Therefore, several thermal dehydration tests of FLiNaK salt were performed with a batch size suitable for thermal-hydraulic experiments. Thermogravimetric Analysis (TGA) was performed for the three constituent fluoride salts individually. Preliminary thermal dehydration plans were then proposed for NaF and KF salts based on the TGA curves. However, the dehydration process may not be required for LiF since its low mass loss (<1.3 wt%). To evaluate the performance of these thermal dehydration plans, a batch-scale salt dehydration test facility was designed and constructed. The preliminary thermal dehydration plans were tested by varying the heating rates, target temperature, and holding time. The sample mass loss data showed that the high temperatures (>500 ℃) were necessary to remove a significant amount of moisture (>1 wt%) from NaF salt, while relatively low temperatures (around 300 ℃) with a long holding time (>10 h) were sufficient to remove most of the moisture from KF salt.

Design and Characteristics of Modern Power MOSFETs for Integrated Circuits

  • Bang, Yeon-Seop
    • The Magazine of the IEIE
    • /
    • v.37 no.8
    • /
    • pp.50-59
    • /
    • 2010
  • $0.18-{\mu}m$ high voltage technology 13.5V high voltage well-based symmetric EDMOS isolated by MTI was designed and fabricated. Using calibrated process and device model parameters, the characteristics of the symmetric and asymmetric EDMOS have been simulated. The asymmetric EDMOS has higher performance, better $R_{sp}$ / BVDSS figure-of-merit, short-channel immunity and smaller pitch size than the symmetric EDMOS. The asymmetric EDMOST is a good candidate for low-power and smaller source driver chips. The low voltage logic well-based EDMOS process has advantages over high voltage well-based EDMOS in process cost by eliminating the process steps of high-voltage well/drift implant, high-temperature long-time thermal steps, etc. The specific on-resistance of our well-designed logic well-based EDMOSTs is compatible with the smallest one published. TCAD simulation and measurement results show that the improved logic well-based nEDMOS has better electrical characteristics than those of the conventional one. The improved EDMOS proposed in this paper is an excellent candidate to be integrated with low voltage logic devices for high-performance low-power low-cost chips.

  • PDF

The Effect of Thermal Annealing Process on Fermi-level Pinning Phenomenon in Metal-Pentacene Junctions

  • Cho, Hang-Il;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.290.2-290.2
    • /
    • 2016
  • Recently, organic thin-film transistors have been widely researched for organic light-emitting diode panels, memory devices, logic circuits for flexible display because of its virtue of mechanical flexibility, low fabrication cost, low process temperature, and large area production. In order to achieve high performance OTFTs, increase in accumulation carrier mobility is a critical factor. Post-fabrication thermal annealing process has been known as one of the methods to achieve this by improving the crystal quality of organic semiconductor materials In this paper, we researched the properties of pentacene films with X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM) analyses as different annealing temperature in N2 ambient. Electrical characterization of the pentacene based thin film transistor was also conducted by transfer length method (TLM) with different annealing temperature in Al- and Ti-pentacene junctions to confirm the Fermi level pinning phenomenon. For Al- and Ti-pentacene junctions, is was found that as the surface quality of the pentacene films changed as annealing temperature increased, the hole-barrier height (h-BH) that were controlled by Fermi level pinning were effectively reduced.

  • PDF

Design and Fabrication of Low-Voltage Twisting-Type Thermal Actuators for Micromirrors (마이크로 거울의 구동을 위한 저전압 비틀림형 열구동기의 설계 및 제작)

  • Kim, Dong-Hyun;Park, Yong-Chul;Park, Seung-Ho;Kwon, Oh-Myoung;Choi, Young-Ki;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.803-810
    • /
    • 2009
  • Micromirrors have a wide range of applications such as optical switches, laser scanners, and digital projection displays. Due to their low performances and high costs, however, practical applications of micromirrors are quite limited. At present micromirrors demand not only a better design but also a simple fabrication process. In this study a twisting-type micromirror that can be driven by two thermal bimorph actuators bending in opposite directions is designed from electro-thermo-mechanical theories and fabricated through a simple MEMS process. Each actuator consists of $SiO_2$ and gold thin-film layers. Simplified analytical model has been built to optimize the performance of micromirror. Due to unexpected resistance increase of metal film and alignment mismatch during fabrication process, experimental rotation angles of micromirrors are about $11^{\circ}$ at applied voltages less than 0.6V. From numerical simulation and analytical studies, however, the next design can provide rotation angles over $20^{\circ}$ at the same applied voltage.

Current Status of Quartz Glass for Semiconductor Process (반도체 공정용 석영유리 현황)

  • Kim, Hyeong-Jun
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.429-451
    • /
    • 2019
  • Quartz glass is a key material for making semiconductor process components because of its purity, low thermal expansion, high UV transmittance and relatively low cost. Domestic quartz glass has a market worth about 500 billion won in 2018, and the market power of Japanese materials is very high. Quartz glass for semiconductor process can be divided into general process and exposure. For general process, molten quartz glass is mainly used, but synthetic quartz glass with higher purity is preferred. Synthetic quartz glass is used as the photomask for the exposure process. Recently, as semiconductors started the sub-nm process, the transition from the transmission type using ArF ultraviolet (194 nm) to the reflection type using EUV ultraviolet (13.5 nm) began. Therefore, the characteristics required for the synthetic quartz glass substrates used so far are also rapidly changing. This article summarizes the current technical trends of quartz glass and recent technical issues. Lastly, the present situation and development possibility of quartz glass technology in Korea were diagnosed.