Design and Characteristics of Modern Power
- MOSFETs for Integrated Circuits

l Introduction

Recently, 0.18— z#m high voltage tech—
nology (HV18) 13.5V (operating voltage)
high  voltage  well~based symmetric
EDMOSTs (Extended Drain Metal Oxide
Semiconductor Transisotrs) have been
fabricated together with low—voltage logic
and medium—voltage MOSFETs for display
driver ICs. Although most of high voltage
W have STI
Isolation), the HV18 technology implements
MTI (Medium Trench Isolation) of a depth

of 1 pm to reduce the chip size while

devices (Shallow  Trench

maintaining an acceptable isolation break—

down voltage between two adjacent
devices.

An asymmetric NMOSFET for low—volt—
age applications was proposed for improv—
ing device performance and short—channel
immunity in [2]. In this paper, character—
istics of asymmetric high voltage well—

based EDNMOS and EDPMOS are explored,

using TCAD simulation, and compared with
symmetric EDMOSTs. The asymmetric
EDMOS proves to have better performance,
short—channel immunity and size than the
symmetric one. Well—designed asymmetric
EDMOS can be an excellent candidate for
future low—power display driver in a
smaller chip.

Modern power integrated circuit has
high—voltage/power  devices such as
EDMOS and LDMOS

low—voltage logic devices on a single chip.

integrated  with

The integration of high and low voltage de—
vices has made the process costly and
complex. High—voltage/power MOSFETSs
need high voltage well/drift implant and ad—
ditional high—temperature long—time ther—
mal process. Recently, power DMOSTs
have been implemented in CMOS logic
technologyw‘r’], In this paper, we propose
an improved logic well—based n—channel
EDMOS integrated in 0.18— zm CMOS logic
technology for high—performance (large
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drive current) low—power (small off—cur—
rent) BVDSS = 15V ~ 20V applications,
including mobile mixed—signal products,
etc. Unlike ordinary EDMOSTs™, our
EDMOSTs have low—voltage logic wells and
need neither high—voltage well/drift implant
nor additional high—temperature long—time
thermal process. Compared to the conven~—
tional EDMOS™, the overlap zone of p— and
n-wells of our improved logic well—based
EDMOS provides an additional device de—
sign variable. The improved logic well—
based nEDMOS has advantages over the
conventional one in terms of the drive cur—
rent, sensitivity of drain saturation current
to drain bias, off—current and breakdown
voltage, and also has much better fig—
ure—of —merit Ry, / BVDSS' than the con—
ventional one at a short length of the
n—well drift region.

Il. Device Structures
1. High Voltage Well-Based EDMOS

HVI8 13.5V symmetric and asymmetric
EDMOS structures are shown in <Fig. 1>
Replacing the high—resistance drift region
on the source side of the symmetric
EDMOS with the low—resistance logic LDD
(Lightly—Doped Drain), we can increase
Ipsat, reduce the pitch size (Lpwaw), specific

on—resistance and improve short channel
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{Fig. 1) Cross—sectional views of (a) symmetric
and (b) asymmetric EDMOSTs

immunity.

The gate length L = 1.5~ ¢m symmetric
EDNMOS and EDPMOS were fabricated, us—
ing 0.18— m high voltage MTI technology.
The MTT is 0.6 #m long and 1.0 #m deep.
The MTI is filled with oxide and liner
nitride. The physical gate oxide thickness is
330 A. The oxide was formed through the
processes of oxide deposition, anneal and
low—voltage MOS oxidation. Elimination of
high—voltage oxidation process step can
prevent boron dopant loss and phosphorus
dopant pile—up at the channel surface of
EDNMOS, and lead to the increase of
BVDSS and the effective channel length.

2. Low Volitage Logic Well-Based
EDMOS

The cross—sectional views of the con—
ventional and improved logic well—based
EDMOSTs with RESURF STT are shown in
<Fig. 2> Note that, unlike the conventional
EDMOS in [3], our conventional EDMOS
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(Fig. 2» Cross—sectional views of
(a) conventional and (b) improved
nEDMOSTs

has RESURF STI beside the drain region.

The nEDMOSTs were simulated and fab—
0.18~p¢m CMOS logic
technology. The parameters A, B, C and D

ricated, using
are device design variables. Lyien, = 1.98 u
m, Lg =1.25 pm, Gy (gate oxide thick—
ness) = 125 A, Wp (gate width) = 10 xm,
and C = D = 0.15 gm are fixed for all
simulations. The parameters A and B are
the lengths of mask windows prepared be—
fore implanting impurity ions of the logic p—
and n—wells, respectively. The conventional
EDMOS has A = 0.6 gmand B = 0.5 xm,
and the improved one A = 0.8 xm, B = 0.7
rmand Loy = 0.4 pm. Lo is the length of
overlap area at which the p— and n—wells
overlap each other. <Fig. 3> shows the si—
mulated 2D and 1D net doping profiles of
the nEDMOSTs. The net doping concen—

Improved nEDMOST
Souyce

Conventional nEDMOST

A
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{Fig. 3) Simulated (a) 2D and (b) 1D net doping
profiles of conventional and improved nEDMOSTs

tration in the overlap zone of the improved
EDMOS is lower than that of the adjacent

p— or n—well due to the doping compensation.

Ill. Electrical Characteristics and
TCAD Simulation

1. High Voltage Well-Based EDMOS

<Fig. 4> shows measured Ip—Vps and
Ip—=Vgs characteristics of HV1& 13.5V
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{Fig. 4) (a) Output and (b) subthreshold characteristics of HVI8 13,5V symmetric EDMOS

symmetric EDMOS, which in good
agreement with TCAD simulation results.
Synopsys TSUPREM4 and MEDICI model

parameters were calibrated to fit the simu—

dare

lated 1—V curves to the measured data. In
particular, to simulate the self heating at the
saturation region of the high voltage EDNMOS,

the heat equation model was used.

& Symmetric EDPMOS

<Fig. 5> shows simulated Z—D net doping
profiles and junction boundaries of EDMOSTs.
Using the same model parameters cali—
brated for the symmetric EDMOS, the [-V
characteristics of the asymmetric EDMOS

were simulated with reasonable confidence,

(Fig. 5) Simulated net—doping profiles of (a)
EDNMOS and (b) EDPMOS, All the devices have
n—type polysilicon gates,

and the simulation results are shown in
<Fig. 6>. <Figs. 7-12> show that the asym—
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{Fig. 6) Simulated (a) output and (b) subthreshold characteristics of HVI8 13,5V asymmetric EDMOS
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(Fig. 7) Dependence of the drain saturation
current on Lg of EDMOSTs, Vgs = 13,5V, Vps =
' 13,5V
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(Fig. 9) Dependence of the threshold voltage

on Lg of EDMOSTs, Vps = 0,1V
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(Fig. 11) Dependence of the breakdown voltage
on lg of EDMOSTS_ Vas = ov,
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(Fig. 8 Dependence of DIBL on Lg of
EDMOSTs, DIBL 2 |Vaillo, Vos=13.5) ~
Veolloz, Vos=0.1)| / 13.4V, Ipy = Ipp = 5x107°
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(Fig. 10) Dependence of off-state current on
Lg of EDMOSTSs, Vgs = 0V, Vos = 135V
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{Fig. 12) Dependence of the specific
on—resistance on Lg of EDMOSTs, Vgs = 13,5V,
Vs = 0,1V,
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{Fig. 13) Dependence of the snapback

voltage on Lo of EDMOSTS. Vas = 13,5V 2. Low Voltage Logic Well-Based

EDMOS
metric EDMOS has better performance,

short—channel immunity and pitch size than
the symmetric EDMOS. From <Figs. 11-

<Figs. 14-16> show TCAD simulation

results on I-V curves of the improved and
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(Fig. 14) Subthreshold characteristics of (a) conventional and (b) improved nEDMOSTs
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{Fig. 15y lb—Vos curves at VGS = 0 V of (a) conventional and (b) improved nEDMOSTs
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conventional nEDMOSTSs, which were veri— o B oroved nEDMOST
fied against measurements. A few
Synopsys TSUPREM4 and MEDICI model
parameters were calibrated to fit the simu-—
lated I-V curves to the measured data.
<{Table 1> lists the electrical parameters of
the improved and conventional nEDMOSTSs.
The snapback voltage (BVDSN) of the im—

proved EDMOS is 22% higher than that of (Fig. 17) Simulated 2D impact ionization rate
distribution at Vgs = 5 V and Vps = 10 V

the conventional one, because the high im—

pact ionization rate area of the improved and Vps = 10 V, which are similar to those
nEDMOS stays away from the Si=SiO, in- at the snapback voltages. Ry, = 7.45 [mQ-
terface while the high rate area of the con— mm?] is comparable to the recently pub—
ventional one close to the interface. lished ultra—low on—resistance of LDMOS",

<Figs. 17-18> show the impact ionization The low Ry values of our nEDMOSTS
rate and potential distributions at Ves = 5 V mainly result from the high doping level of

(Table 1) Electrical parameters and bias conditions of the logic well-based
improved and conventional nEDMOSTs

RolM®: | 'y | e | BVOSS[Y]
Viea V1 | et | k) | i | atvgeeoy, | BVDSNIVIaE | gy (AU | o Alum]
at " g M| B Ve | VieBY, | at VOV, | atVegeOV,
B | VoV, [atVesV, | atveesy, | pstxaos || el | e | BT
Vo0V | o0V | VoV | V=10V | [aum] | 0T s Vo s

improved 0.749 745 549 546 150 174 124X10% | 236%10%

Conventional | 0829 8.70 484 508 150 15.0 245X10% | Boaxion
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{Fig. 18) Simulated 2D electric potential

distribution at Vs = 5 V and Vpg = 10 V
the logic n—well drift region.

The improved EDMOS has 7.91% ~
13.4% larger drain saturation current,
smaller variation of Ipe with Vpg than the
conventional one, because the improved
EDMOS has lower threshold voltage, short—
er effective channel length, higher mobile
electron concentration and lower net doping
density due to the overlap zone. The
off—current of the improved EDMOS is 49%
~ 53% smaller than that of the conventional
one, because the net rate of Shockley—
Read—Hall electron—hole pair generation—
recombination of the improved EDMOS is
lower than the conventional one especially
at the drift depletion region.

<Fig. 19> shows that R, / BVDSS of the
improved EDMOS is dramatically lower than
that of the conventional one at the short
length of the n—well drift region. Ipsa
roll—off of the improved EDMOS is much
smaller than the conventional one as the
n—well drift length becomes shorter as
shown in <Fig. 20>
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(Fig. 19) Simulated variations of BVDSES and Rep
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{Fig. 20y Simulated variations of Ipst With the
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Loien = 1.98 um
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IV. Summary

0.18— xm high voltage technology 13.5V
high voltage well—based symmetric EDMOS
MTI  was

fabricated. Using calibrated process and

isolated by designed and
device model parameters, the character—
istics of the symmetric and asymmetric
EDMOS have been simulated. The asym~
metric EDMOS has higher performance,
better Ry, / BVDSS figure—of—~merit, short
~channel immunity and smaller pitch size
than the symmetric EDMOS. The asym-—
metric EDMOST is a good candidate for
low—power and smaller source driver chips.

The low voltage logic well-based EDMOS
process has advantages over high voltage
well-based EDMOS in process cost by
eliminating the process steps of high—volt—
age well/drift implant, high—temperature
fong—time thermal steps, etc. The specific
on—resistance of our well—designed logic
well—based EDMOSTs is compatible with
the smallest one published. TCAD simu—
lation and measurement results show that
the improved logic well~based nEDMOS
has better electrical characteristics than
those of the conventional one. The im—
proved EDMOS proposed in this paper is an
excellent candidate to be integrated with
low voltage logic devices for high—per—

formance low—power low=cost chips.
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