• 제목/요약/키워드: low power supply voltage

검색결과 742건 처리시간 0.032초

Control and Design of a Arc Power Supply for KSTAR's the Neutral Beam Injection

  • Ryu, Dong-Kyun;Lee, Hee-Jun;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.216-226
    • /
    • 2015
  • The neutral beam injection generate ultra-high temperature energy in the tokamak of nuclear fusion. The neutral beam injection make up arc power supply, filament power supply and acceleration & deceleration power supply. The arc power supply has characteristics of low voltage and high current. Arc power supply generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The proposed buck converter used parallel switch because it can be increased capacity and decrease conduction loss. When an arc generated, the neutral beam injection chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus the proposed converter should be designed for the characteristics of low voltage and high current. Also, the arc power supply should be guaranteed for system stability. The proposed parallel buck converter enables the system stability of the divided low output voltage and high current. The proposed converter with constant output be the most important design of the output inductor. In this paper, designed arc power supply verified operation of system and stability through simulation and prototype. After it is applied to the 288[kW] arc power supply for neutral beam injection.

A Low Voltage Bandgap Current Reference with Low Dependence on Process, Power Supply, and Temperature

  • Cheon, Jimin
    • 한국정보기술학회 영문논문지
    • /
    • 제8권2호
    • /
    • pp.59-67
    • /
    • 2018
  • The minimum power supply voltage of a typical bandgap current reference (BGCR) is limited by operating temperature and input common mode range (ICMR) of a feedback amplifier. A new BGCR using a bandgap voltage generator (BGVG) is proposed to minimize the effect of temperature, supply voltage, and process variation. The BGVG is designed with proportional to absolute temperature (PTAT) characteristic, and a feedback amplifier is designed with weak-inversion transistors for low voltage operation. It is verified with a $0.18-{\mu}m$ CMOS process with five corners for MOS transistors and three corners for BJTs. The proposed circuit is superior to other reported current references under temperature variation from $-40^{\circ}C$ to $120^{\circ}C$ and power supply variation from 1.2 V to 1.8 V. The total power consumption is $126{\mu}W$ under the conditions that the power supply voltage is 1.2 V, the output current is $10{\mu}A$, and the operating temperature is $20^{\circ}C$.

다중 공급 전압을 이용한 저 전력 스케쥴링 및 할당 알고리듬 (A Low power Scheduling and Allocation Algorithm for Multiple Supply Voltage)

  • 최지영;박남서;안도희
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권2호
    • /
    • pp.79-86
    • /
    • 2002
  • 본 논문은 다중 공급 전압을 이용한 저 전력 스케쥴링 및 할당 알고리듬을 제안한다. 다중 공급 전압스케쥴링에서는 전력소비를 줄이기 위해 다른 전압 레벨을 이용해 실험적으로 가능한 연산을 수행하여 제어 스텝을 결정한다. 그리고 다중 공급 전압 할당에서는 그래프 컬러링 기법을 이용해 레지스터 상의 스위칭 활동을 최소화한다. 상위 레벨 벤치마크 예제를 이용한 실험으로부터 우리는 다중 공급 전압을 이용한 제안한 알고리듬이 전력 소비를 줄이는데 효율적임을 보인다.

  • PDF

저전압 감지회로에 관한 연구 (A Study on the Low Voltage Detection Circuit)

  • 김필중
    • 한국전기전자재료학회논문지
    • /
    • 제29권11호
    • /
    • pp.676-680
    • /
    • 2016
  • This paper describes a low voltage detection circuit used in the semiconductor chips. The circuit was composed of a detection part of the CMOS structure as three stages and two inverters. The output of the low voltage detection circuit become to 'high' from 'low', when the power supply voltage falls below 80%. When the power supply voltage is 5 V, it was detected at 4 V point. The proposed low voltage detection circuit can be easily applied only by changing the resister and the capacitor without structural change in a wide range of power supply voltage.

Data Supply Voltage Reduction Scheme for Low-Power AMOLED Displays

  • Nam, Hyoungsik;Jeong, Hoon
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.727-733
    • /
    • 2012
  • This paper demonstrates a new driving scheme that allows reducing the supply voltage of data drivers for low-power active matrix organic light-emitting diode (AMOLED) displays. The proposed technique drives down the data voltage range by 50%, which subsequently diminishes in the peak power consumption of data drivers at the full white pattern by 75%. Because the gate voltage of a driving thin film transistor covers the same range as a conventional driving scheme by means of a level-shifting scheme, the low-data supply scheme achieves the equivalent dynamic range of OLED currents. The average power consumption of data drivers is reduced by 60% over 24 test images, and power consumption is kept below 25%.

저전압 대전류 LLC 공진형 컨버터를 이용한 그린 PC용 전원공급장치 설계 (Design of Power Supply for Green PC using Low Voltage High Current LLC Resonant Converter)

  • 유영도;김인동;노의철;류명효;백주원
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.211-219
    • /
    • 2014
  • This paper proposes a low voltage high current LLC resonant converter for Green PC. Green PC is composed of a lot of blade PCs, and it is a centralized system to manage them in computer center. Green PC should require that its power supplies have several characteristics such as low output voltage, high output current, and high power conversion efficiency. Conventional PSFB (Phase Shift Full Bridge) converter is usually used as DC/DC converter for computer power supply because it has high power conversion efficiency thanks to ZVS (Zero Voltage Switching) operation under middle and high load conditions. However, this converter has some problems such as large switching noise and limitation of ZVS operation under light load condition. In order to improve the performance of power supply for Green PC, a new power supply using popular high efficiency LLC resonant converter for low voltage and high current application is proposed in this paper. The proposed power supply has ZVS capability over the entire load range, thus resulting in good efficiency and high switching frequency. Experimental results verify the performance of the proposed power supply for Green PC using 2[kW] (19[V], 105[A]) rated prototype converter.

Low Drop-Out (LDO) Voltage Regulator with Improved Power Supply Rejection

  • Jang, Ho-Joon;Roh, Yong-Seong;Moon, Young-Jin;Park, Jeong-Pyo;Yoo, Chang-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권3호
    • /
    • pp.313-319
    • /
    • 2012
  • The power supply rejection (PSR) of low drop-out (LDO) voltage regulator is improved by employing an error amplifier (EA) which is configured so the power supply noise be cancelled at the output. The LDO regulator is implemented in a 0.13-${\mu}m$ standard CMOS technology. The external supply voltage level is 1.2-V and the output is 1.0-V while the load current can range from 0-mA to 50-mA. The power supply rejection is 46-dB, 49-dB, and 38-dB at DC, 2-MHz, and 10-MHz, respectively. The quiescent current consumption is 65-${\mu}A$.

저전압대전류(低電壓大電流) DC-DC 컨버터 기술동향(技術動向) (Trend of low voltage and high current Technology for DC-DC Converters)

  • 영목정태랑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.3-11
    • /
    • 2002
  • This paper presents the trend of low voltage and high current technology for DC-DC converters. It can be said that the output voltage of the on-board power supply has been rapidly moving forward a low voltage in proportion to the minuteness of the semiconductors. As for as its speed is concerned, the change of the market situation seems to be faster than that of R&D for the low voltage and high current products put out by power supply manufacturers. Here, the present situation and the trend of non-isolated type step-down DC-DC converter and isolated type DC-DC converter called "Brick" will be taken up mainly from the fellowing point of view. -low voltage and high current keeping up with the current demand for the latest telecommunication networks and broadband. -build-up of the total solution for dispersion system power supply. In this paper, an explanation is given to mainly concerning to the newest products in the supplier's position.

  • PDF

Evaluation of a Self-Adaptive Voltage Control Scheme for Low-Power FPGAs

  • Ishihara, Shota;Xia, Zhengfan;Hariyama, Masanori;Kameyama, Michitaka
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권3호
    • /
    • pp.165-175
    • /
    • 2010
  • This paper presents a fine-grain supply-voltage-control scheme for low-power FPGAs. The proposed supply-voltage-control scheme detects the critical path in real time with small overheads by exploiting features of asynchronous architectures. In an FPGA based on the proposed supply-voltage-control scheme, logic blocks on the sub-critical path are autonomously switched to a lower supply voltage to reduce the power consumption without system performance degradation. Moreover, in order to reduce the overheads of level shifters used at the power domain interface, a look-up-table without level shifters is employed. Because of the small overheads of the proposed supply-voltage-control scheme and the power domain interface, the granularity size of the power domain in the proposed FPGA is as fine as a single four-input logic block. The proposed FPGA is fabricated using the e-Shuttle 65 nm CMOS process. Correct operation of the proposed FPGA on the test chip is confirmed.

DRAM 의 저전력 구현을 위한 안정한 기판전압 발생기 설계에 관한 연구 (A study on the Design of a stable Substrate Bias Generator for Low power DRAM's)

  • 곽승욱;성양현곽계달
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.703-706
    • /
    • 1998
  • This paper presents an efficient substrate-bias generator(SBG)for low-power, high-density DRAM's The proposed SBG can supply stable voltage with switching the supply voltage of driving circuit, and it can substitude the small capacitance for the large capacitance. The charge pumping circuit of the SBG suffere no VT loss and is to be applicable to low-voltage DRAM's. Also it can reduce the power consumption to make VBB because of it's high pumping efficiency. Using biasing voltage with positive temperature coefficient, VBB level detecting circuit can detect constant value of VBB against temperature variation. VBB level during VBB maintaining period varies 0.19% and the power dissipation during this period is 0.16mw. Charge pumping circuit can make VBB level up to -1.47V using VCC-1.5V, and do charge pumping operation one and half faster than the conventional ones. The temperature dependency of the VBB level detecting circuit is 0.34%. Therefore the proposed SBG is expected to supply a stable VBB with less power consumption when it is used in low power DRAM's.

  • PDF