• Title/Summary/Keyword: loop-shaping

Search Result 124, Processing Time 0.021 seconds

Vibration Control of a Rotating Cantilevered Beam Using Piezoceramic Actuators (압전 세라믹 작동기를 이용한 회전 외팔 보의 진동 제어)

  • 박종석;최승복;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.255-259
    • /
    • 1996
  • This paper presents active vibration control of a rotating cantilevered beam using piezoceramic actuators. A governing equation of motion is obtained by the Hamilton's principle and expressed in the state space representation. Subsequently, an H$_{\infty}$ control which is robust to system uncertainties is synthesized through the loop shaping design procedure. Computer simulations for the steady-state vibration control are undertaken in order to demonstrate the effectiveness and robustness of the proposed control methodology..y.

  • PDF

Intelligent PID Controller Design Using Root-Locus Analysis for Systems with Parameter Uncertainties (불확실한 파라미터를 갖는 시스템을 위한 근궤적법을 이용한 지능형 PID 제어기 설계)

  • Shin, Young-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.67-76
    • /
    • 2008
  • In this research, a simple technique for designing PID controller, which guarantees robust stability for two-mass systems with parameter uncertainties as well as rigid-body behavior and zero steady-state error,is described. As well, such a PID controller is designed to mate two important frequencies, at which the given system is excited, very close so that an appropriate reference profile generated by using command shaping techniques can cover those two frequencies. Root-locus analysis. which shows traces of closed-loop poles for the given system, is used to design this PID controller. Finally, feedforward controller is added to improve tracking performance of the closed-loop system. Simulation for a system with a flexible mode and parameter uncertainties is executed to prove the feasibility of this technique.

A Tuning Algorithm for LQ-PID Controllers using the Combined Time - and Frequency-Domain Control Method

  • Kim, Chang-Hyun;Lee, Ju;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1244-1254
    • /
    • 2015
  • This paper proposes a new method for tuning a linear quadratic - proportional integral derivative controller for second order systems to simultaneously meet the time and frequency domain design specifications. The suitable loop-shape of the controlled system and the desired step response are considered as specifications in the time and frequency domains, respectively. The weighting factors, Q and R of the LQ controller are determined by the algebraic Riccati equation with respect to the limiting behavior and target function matching. Numerical examples show the effectiveness of the proposed LQ-PID tuning method

Design of LQ-servo PI controller considering Weight (가중치를 이용한 LQ-Servo형 PI 제어기 설계)

  • 서병설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.570-576
    • /
    • 2000
  • This paper proposed LQ-Servo PI controller by considering LQ-Servo structure as PI controller with a partial state feedback and concerns about the development of the flexible design algorithm by introducing weights to the design parameters of the previous LQ-Servo design method. the propose algorithm improves the matchings of the maximum and minimum singular values at high and low frequencies of the design loop transfer function as well as its loop shaping for performance.

  • PDF

Design of Robust Speed Controllers for Marine Diesel Engine (선박용 대형 디젤 기관의 강인 속도 제어기 설계)

  • Hwang, Soon-Kyu;Lee, Young-Chan;Kim, Chang-Hwa;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.820-828
    • /
    • 2011
  • Energy saving is one of the most important factors for profits in marine transportation. In order to reduce the specific fuel oil consumption, the ship's propulsion efficiency must be increased as much as possible. The propulsion efficiency depends upon a combination of propulsion engine and propeller that has better efficiency as lower rotational speed. As the engine has lower speed the variation of rotational torque become larger because of the longer delay time in fuel oil injection process. In this study, robust control theory is applied to the design of engine speed controllers which are sub-optimal $H_{\infty}$ controller, $H_{\infty}$ loop-shaping controller and ${\mu}$-synthesis controller considering robust stability and robust performance. And the validity of these three controllers is investigated through the results of computer simulation.

The Synchronous Control System Design for Four Electric Cylinders (4축 전동실린더의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1209-1218
    • /
    • 2016
  • In order to safely and speedily transport a load such as a large glass plate using four electric cylinders, the synchronous error outside the permitted range should not be continuously generated between the cylinders. In this study, a methodology of synchronous control which can be applied to synchronization of four or more cylinders is developed. The synchronous control system based on the decoupling structure is composed of a reference model, position and synchronous controllers in the respective cylinders. The reference model is used for calculating the decoupled synchronous error and control input for the each cylinder. The position controller of I-PD type is designed in order that the cylinder may follow the reference signal without overshoot and input saturation. And the synchronous controller of lead compensator is designed to achieve stable and accurate synchronization through loop shaping approach. Finally, the simulation results show that the synchronization between the four cylinders can be quickly and stably while each cylinder rod is transferred to the target point under torque disturbance.

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.

Controller Design of Piezoelectric Milliactuator for Dual Stage System (이중 구동 시스템을 위한 압전 밀리엑츄에이터의 제어기 설계)

  • Hong, Eo-Jin;Yoon, Joon-Hyun;Park, No-Cheal;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.46-51
    • /
    • 2001
  • To reach high areal density, less track pitch is expected and more servo bandwidth is required. One approach to overcoming the problem is by using dual stage servo system. In this system, a voice coil motor (VCM) is used as the primary stage while a milliactuator is used as the secondary stage. We have suggested new milliactuator based on the shear mode of piezoelectric elements to drive the head suspension assembly. In this paper, we introduce controller design method, PQ method. PQ method reduces the controller design problem for DISO(dual-input/single-output) systems to two standard controller design problems for SISO(single-input/single-output) problems. The first part of PQ method directly address the issue of actuator output contribution, and the second part allows the use of traditional loop shaping to achieve the overall system performance. This paper shows how to employ the PQ method to meet aggressive close-loop performance specifications for a disk drive system with a VCM and piezoelectric milliactuator.

  • PDF

Robust Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT 기법을 이용한 승용디젤엔진 공연비 제어 알고리즘 설계 연구)

  • Park, Inseok;Hong, Seungwoo;Shin, Jaewook;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.88-97
    • /
    • 2013
  • This paper presents a robust air-to-fuel ratio (AFR) control algorithm for managing exhaust gas recirculation (EGR) systems. In order to handle production tolerance, deterioration and parameter-varying characteristics of the EGR system, quantitative feedback theory (QFT) is applied for designing the robust AFR control algorithm. A plant model of EGR system is approximated by the first order transfer function plus time-delay (FOPTD) model. EGR valve position and AFR of exhaust gas are used as input/output variables of the plant model. Through engine experiments, parameter uncertainty of the plant model is identified in a fixed engine operating point. Requirement specifications of robust stability and reference tracking performance are defined and these are fulfilled by the following steps: during loop shaping process, a PID controller is designed by using a nominal loop transmission function represented on Nichols chart. Then, the frequency response of closed-loop transfer function is used for designing a prefilter. It is validated that the proposed QFT-based AFR control algorithm successfully satisfy the requirements through experiments of various engine operating points.

Robust controller design for RTP system using weighted mixed sensitivity minimization (하중 혼합감도함수를 이용한 RTP 시스템의 견실제어기 설계)

  • 이상경;오도창;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.434-437
    • /
    • 1997
  • In this paper, we present an $H^{\infty}$ controller design of RTP system satisfying robust stability and performance using weighted mixed sensitivity minimization. In industrial fields, RTP system is widely used for improving the oxidation and the annealing in semiconductor manufacturing process. The main control factors are temperature control of wafer and uniformity in the wafer. The control of temperature and uniformity has been solved by PI control method. We improve robust stability and performance of RTP system by the design of $H^{\infty}$ controller using the weighted mixed sensivity function. An example is proposed to show the validity of proposed method.d.

  • PDF