DOI QR코드

DOI QR Code

The Synchronous Control System Design for Four Electric Cylinders

4축 전동실린더의 동기제어시스템 설계

  • 양경욱 (전남대학교 해양기술학부) ;
  • 변정환 (전남대학교 해양기술학부)
  • Received : 2016.10.17
  • Accepted : 2016.12.24
  • Published : 2016.12.31

Abstract

In order to safely and speedily transport a load such as a large glass plate using four electric cylinders, the synchronous error outside the permitted range should not be continuously generated between the cylinders. In this study, a methodology of synchronous control which can be applied to synchronization of four or more cylinders is developed. The synchronous control system based on the decoupling structure is composed of a reference model, position and synchronous controllers in the respective cylinders. The reference model is used for calculating the decoupled synchronous error and control input for the each cylinder. The position controller of I-PD type is designed in order that the cylinder may follow the reference signal without overshoot and input saturation. And the synchronous controller of lead compensator is designed to achieve stable and accurate synchronization through loop shaping approach. Finally, the simulation results show that the synchronization between the four cylinders can be quickly and stably while each cylinder rod is transferred to the target point under torque disturbance.

4대의 전동실린더를 이용하여 대형 유리판과 같은 부하를 신속하고 안전하게 이송하기 위해서는 동기오차가 허용된 범위 내에서 지속적으로 유지되어야 한다. 본 연구에서는 4대 이상의 전동실린더 간의 동기화에 적용 가능한 동기제어기법이 제안된다. 이 동기제어시스템은 디커플링 구조에 기반을 두고 있으며, 기준모델, 위치제어기 그리고 동기제어기로 구성된다. 기준모델은 각각의 실린더에 대해 상호 분리된 동기오차와 제어입력의 계산이 가능하도록 한다. I-PD형의 위치제어기는 각 실린더가 오버슈트와 입력포화를 일으키지 않고 지령을 추종하도록, 그리고 진상보상기형의 동기제어기는 루프정형을 통해 안정적으로 정밀한 동기가 되도록 설계 된다. 끝으로 토크외란이 인가된 상태에서도 4개의 실린더가 신속하고 안정적으로 동기를 유지하면서 목표지점에 도달됨을 시뮬레이션으로 검증한다.

Keywords

References

  1. S. Ahn, M. Choi, Y. Park, and J. Kim, "Synchronized Control of 2-Driving Axes in Large Scale Gantry Robot Systems," Proc. of the Korean Society for Precision Engineering Spring Annual Meeting, Pohang, Korea, May, 1998, pp. 436-439.
  2. M. Nakamura, D. Hiyamizu, and N. Kyura, "A Method for Contour Control of Mechatronics Servo System with Master-Slave Axes by use of Synchronous Position Control," Trans. of the Society of Instrument and Control Engineers, vol. 33, no. 4, 1997, pp. 274-279. https://doi.org/10.9746/sicetr1965.33.274
  3. Y. Shin, C. Chen, and A. Lee, "A novel cross-coupling control for Bi-axis motion," Int. J. of machine tools & manufacture, vol. 42, no. 14, 2002, pp. 1539-1548. https://doi.org/10.1016/S0890-6955(02)00109-8
  4. S. Jeong and S. You, "Precise position synchronous control of multi-axis servo system," Mechatronics, vol. 18, no. 3, 2008, pp. 129-140. https://doi.org/10.1016/j.mechatronics.2007.10.009
  5. J. Byun and M. Choi, "A Method of Synchronous Control System for Dual Parallel Motion Stages," Int. J. of Precision and Manufacturing, vol. 13, no. 6, 2012, pp. 883-889. https://doi.org/10.1007/s12541-012-0115-2
  6. J. Byun and Y. Kim, "A Study on Construction of Synchronous Control System for Extension and Stability," Trans. of the Korean Society of Mechanical Engineers, vol. 26, no. 6, 2002, pp. 1135-1142. https://doi.org/10.3795/KSME-A.2002.26.6.1135
  7. S. Jeong, D. Choi, and J. Park, "Synchronous Control of Center Distributed Multi-Head Embroidery Machine Using Disturbance Observer," J. of the Korean Society of Precision Engineering, vol. 31, no. 11, 2014, pp. 1015-1021. https://doi.org/10.7736/KSPE.2014.31.11.1015
  8. C. Canudas, K. Astrom, and K. Braun, "Adaptive Friction Compensation in DC-motor Drives," Institute of Electrical and Electronics Engineers Trans. on Robotics and Automation, vol. 3, no. 6, 1987, pp. 681-685.
  9. P. Dupont and E. Dunlap, "Friction Modeling and PD Compensation at Very Low Velocities," Trans. of the American Society of Mechanical Engineers, vol. 117, no. 1, 1995, pp. 8-14.
  10. A. Tesfaye, H. Lee, and M. Tomizuka, "A Sensitivity Optimization Approach to Design of a Disturbance Observer in Digital Motion Control System," Institute of Electrical and Electronics Engineers/the American Society of Mechanical Engineers Trans. on Mechatronics, vol. 5, no. 1, 2000, pp. 32-38.
  11. M. Iwasaki, T. Shibata, and N. Matui, "Disturbance-Observer-Based Nonlineal Friction Compensation in Table Drive Systems," Institute of Electrical and Electronics Engineers/the American Society of Mechanical Engineers Trans. on Mechatronics, vol. 4, no. 1, 1999, pp. 3-8.
  12. D. Kim and B. Sung, "The Synchronous Position Controller of Hydraulic Cylinders for Sluice Gate," Proc. of the Korean Society of Mechanical Engineers Autumn Annual Meeting, Changwon, Korea, Nov., 2012, pp. 2268-2273.
  13. C. Kim, "Robust Disturbance Suppression Control for AC Servo Motors," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 4, 2012, pp. 839-848. https://doi.org/10.13067/JKIECS.2012.7.4.839
  14. S. Kwak and J. Yang, "Design of Brushless DC Motor Speed Control System for Handpieces," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 6, 2016, pp. 597-603. https://doi.org/10.13067/JKIECS.2016.11.6.597
  15. Y. Jeon, "Speed Control of the BLDC Motor using the Disturbance Observer," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 10, 2016, pp. 955-962. https://doi.org/10.13067/JKIECS.2016.11.10.955