• Title/Summary/Keyword: loop gain

Search Result 636, Processing Time 0.026 seconds

Gain bandwidth characteristics of erbium-doped Fiber amplifiers for long-haul transmissions (에르븀 첨가 광섬유 증폭기의 장거리 전송에 따른 이득 평탄화 특성)

  • 정희상;이동한;정윤철;안성준;조흥근
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.181-185
    • /
    • 1998
  • Gain characteristic of concatenated erbium-doped fiber amplifiers(EDFA) are studied with a recirculating EDFA loop. For a non-flat gain EDFA, the 3 dB gain bandwidth was reduced to 6 nm after the 20th EDFA. However, for an optimized gain flattened EDFA, in a simple configuration, the 5 dB gain bandwidth was found to be 9nm, even after the 100th EDFA, corresponding to 8000km transmission. This results suggest that the simple optimized flat gain amplifier could be a good candidate for ultra-long distance wavelength division multiplexed transmissions.

  • PDF

Quadratic Stabilization by $H^{\infty}$ Output Feedback Controllers with Adjustable Parameters (조정가능한 파라미터를 가지는 $H^{\infty}$출력궤환 제어기를 이용한 자승적 안정화)

  • 강성규;이갑래;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.101-104
    • /
    • 1997
  • In this paper, we deal with a quadratic stabilization by $H^{\infty}$ output feedback controllers with adjustable parameters. The designed controller contains a contractive time-varying gain which can be used to adjust the responses of the resulting closed-loop system. The free parameter expressed as time-varying gain is chosen so that a Lyapunov function of the closed-loop system descends as fast as possible. A numerical example is given to show the validity of proposed method..

  • PDF

Gain flattening of erbium-doped fiber amplifiers by using an AOTF for long-haul WDM optical transmissions (파장분할방식 장거리 광전송을 위한 음향광학필터를 이용한 에르븀 첨가 광섬유 증폭기의 이득 평탄화)

  • 안성준;정희상;이동한
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.413-416
    • /
    • 1998
  • We have flattened the gain of EDFA by using a long-period FBG filter and AOTF's. The gain and optical SNR characteristics of the gain-flattened EDFA in long-haul transmission been evaluated in a recirculating EDFA loop. The gain variation was less than 4.6 dB and the optical SNR was higher than 14 dB over 20-nm wavelength range when the optical signal went through the EDFA as many as 200 times. These results indicate that this gain-flattened EDFA is applicable for ultra long-haul WDM optical transmissions over 8000 km.

  • PDF

A Robust Track-following Control for the Stable Coarse Seek (안정적인 조동 검색을 위한 강인 트랙 추종 제어)

  • Lee, Moon-Noh;Jin, Kyoung-Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.279-286
    • /
    • 2010
  • In this paper, we provide a robust track-following controller design method for the stable coarse seek control. Due to the inaccurate velocity control during a coarse seek, the shake of fine actuator is generated and thus a gain-up track-following control is required to complete stably the coarse seek. To this end, a loop gain adjustment algorithm is introduced to estimate accurately the shake of fine actuator. A weighting function can be properly selected from a minimum tracking gain-up open-loop gain, calculated from the estimated shake quantity of fine actuator. A robust tracking gain-up controller is designed by considering a robust $H_{\infty}$ control problem using the weighting function. The proposed design method is applied to the coarse seek control system of an optical rewritable drive and is evaluated through the experimental results.

IMC-PID Controller Tuning using Loop Shaping Method (루프 형성 기법을 이용한 IMC-PID 제어기 동조)

  • Kim, Chang-Hyun;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.95-97
    • /
    • 2004
  • This paper proposed new IMC-PID controller design method that use loop shaping method. It could consider such design specifications as gain margin, phase margin, sensitivity function etc by appling the loop shaping method for tuning IMC-PID controller whose structure has only one design parameter and guarantees internal stability. To shape desirable loop gain, the relation between these design specification and parameter is derived by mathematical basis. And the availability of proposed in this paper tuning method that can regard design specifications is checked through example comparison and analysis.

  • PDF

Measurement of Velocity Disturbance for Robust Seek Control (강인 검색 제어를 위한 속도 외란 측정)

  • 이문노;신진호;김성우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.860-867
    • /
    • 2003
  • This paper presents a systematic method measuring a velocity disturbance to design the robust seek loop system of optical disk drives. The velocity disturbance caused by the rotation of a disk has a greater influence on the performance of the seek control loop as the rotational speed increases. Thus, it needs to measure the extent of the velocity disturbance and design the seek control loop based on the measured data. The measurement method of the velocity disturbance is a real-time . method using a measurable velocity and a velocity controller output and is a robust method considering actuator uncertainties. The loop gain adjustment algorithm is introduced to compensate for the actuator uncertainties. The proposed method is implemented by an experimental digital system and is evaluated through an experiment.

Absolute Stability Margins in Missile Guidance Loop

  • Kim, Jong-Ju;Lyou, Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.460-466
    • /
    • 2008
  • This paper deals with the stability analysis of a missile guidance loop employing an integrated proportional navigation guidance law. The missile guidance loop is formulated as a closed-loop control system consisting of a linear time-invariant feed-forward block and a time-varying feedback gain. Based on the circle criterion, we have defined the concept of absolute stability margins and obtained the gain and phase margins for the system assuming 1 st order missile/autopilot dynamics. The correlation between the absolute stability margins and the margins derived from the frozen system analysis is also discussed.

A study on detection of composite errors and high precision cutting method by numerical control of two-dimensional circular interpolation in machining centers (Machining center에서 2차원 원호보간의 복합오차 검출 및 수치제어에 의한 고정밀도 가공방법에 관한 연구)

  • Kim, J.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.117-126
    • /
    • 1994
  • This paper describes an application step of a $R^{-{\theta}}$ method which measures circular movements in machining centers. The detection of composite errors of circular movements and a high precision cutting method in machining centers were investigated by the analysis of data measured by $R^{\theta }$method which can detect the rotating angle and is applicable to variable measuring radius. When the error by squareness error and unbalance of position-loop-gain were mixed, the detection method of each error was proposed. Although the errors by squarenss error and backlash compensation were mixed, the errors by squareness error be detected. If the errors by unbalance of position-loop-gain and backlash compensation were mixed, the errors by unbalance of position-loop-gain could not detected. A high precision cutting mehod, which uses the NC program compensated by using feed-back data from error measured by the $R^{\theta }$method, was proposed.

  • PDF

A 1.5V CMOS High Frequency Operational Amplifier for High Frequency Signal Processing Systems. (고주파 신호처리 시스템을 위한 1.5V CMOS 고주파 연산증폭기)

  • 박광민;김은성;김두용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1117-1120
    • /
    • 2003
  • In this paper, a 1.5V CMOS high frequency operational amplifier for high frequency signal processing systems is presented. For obtaining the high gain and the high unity gain frequency with the 1.5V supply voltage, the op-amp is designed with simple two stages which are consisting of the rail-to-rail differential input stage and the class-AB output stage. The designed op-amp operates with the 1.5V supply voltage, and shows well the push-pull class-AB operation. The simulation results show the DC open loop gain of 77dB and the unity gain frequency of 100MHz for the 1㏁ ┃ 10pF load. When the resistive load R$_1$. is varied from 1㏁ to 1 ㏀, the DC open loop gain decreases by only 4dB.

  • PDF

A CMOS RF Power Detector Using an AGC Loop (자동 이득제어 루프를 이용한 CMOS RF 전력 검출기)

  • Lee, Dongyeol;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.101-106
    • /
    • 2014
  • This paper presents a wide dynamic range radio-frequency (RF) root-mean-square (RMS) power detector using an automatic gain control (AGC) loop. The AGC loop consists of a variable gain amplifier (VGA), RMS conversion block and gain control block. The VGA exploits dB-linear gain characteristic of the cascade VGA. The proposed circuit utilizes full-wave squaring and generates a DC voltage proportional to the RMS of an input RF signal. The proposed RMS power detector operates from 500MHz to 5GHz. The detecting input signal range is from 0 dBm to -70 dBm or more with a conversion gain of -4.53 mV/dBm. The proposed RMS power detector is designed in a 65-nm 1.2-V CMOS process, and dissipates a power of 5 mW. The total active area is $0.0097mm^2$.