• 제목/요약/키워드: load-transfer method

검색결과 597건 처리시간 0.029초

배전계통에서의 최적 부하절체를 위한 전문가 시스템 (An Expert System for Optimal Load Transfer in Distribution Systems)

  • 문영현;최병윤;김세호
    • 대한전기학회논문지
    • /
    • 제39권9호
    • /
    • pp.903-911
    • /
    • 1990
  • When load areas on a feeder are deenergized due to faults and scheduled outage, operators need to identify neighboring feeders, try to restore customers and minimize out-of-service areas. These cases include knowledge of system states and various constraints such as voltage drop. This paper concerns the load transfer in fault restoration and scheduled outage. Also, the operating constraints such as line current capacity, relay trip current, transformer capacity, voltage drop and line loss are considered. This expert system can propose the optimal load transfer method by analyzing the system state and considering the constraints.

  • PDF

쇄석기의 충격하중 정량화에 대한 연구 (A Study on the Impact Load Quantification of the Jaw Crusher)

  • 홍성주;양해정
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.1-7
    • /
    • 2019
  • Jaw crusher is a device that breaks rock collected from mines or quarries to produce aggregates of the size desired by user. A representative method for measuring load is to measure them by attaching force sensors directly to the part where the load is generated. However, the direct method has many limitations such as high-impact loads generation in equipment or space constraints, sensor capacities and costs. Therefore, Transfer Path Analysis (TPA) was used to indirectly measure impact loads by attaching acceleration sensors. In this study, both direct and TPA methods were used to measure the impact load of Jaw crusher. This study finally quantifies the impact of the load generated by the Jaw crusher using direct method and TPA method, and comparing the impact load measured calculated the derive the error rate.

축하중 재하말뚝의 하중전이 거동에 대한 수치해석 (A Numerical Analysis of Load Transfer Behavior of Axially Loaded Piles)

  • 오세붕;최용규
    • 한국지반공학회지:지반
    • /
    • 제14권2호
    • /
    • pp.93-106
    • /
    • 1998
  • 축하중 재하시 실제 강관말뚝의 거동을 API 하중전이 곡선을 이용한 유한차분해석과 FLAC 프로그램을 이용한 수치해석으로 분석하였다. 실험적으로 계측한 말뚝두부의 하중-변위 관계와 깊이에 따른 축하중 분포를 적합하게 예측할 수 있었다. 특히, FLAC 프로그램 해석결과에서는 하중 제거시 매립층에서 응력 경로가 파괴 포락선 상에서 발생하여 비선형적인 하중-변위 관계를 매우 유터사하게 예측할 수 있었다. 또한 FLAC 프로그램 해석결과 및 API 규준에 따른 하중전이 관계를 실험결과와 비교하여, 말뚝-지반간 전이거동을 분석하였다. 사례연구를 통하여 API 하중전이관계를 이용한 유한차분해석이나 FLAC 프로그램을 이용한 수치해석으로 축하중 재하 말뚝의 공학적인 거동을 합리적으로 평가할 수 있음을 알 수 있었다.

  • PDF

스펙트럴 전달행렬에 의한 헬리컬 기어계의 진동해석 (Vibration Analysis of the Helical Gear System by Spectral Transfer Matrix)

  • 박찬일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.774-781
    • /
    • 2006
  • This paper presents a study on the analytical prediction of vibration transmission from helical gears to the bearing. The proposed method is based on the application of the three dimensional helical gear behaviors and complete description of shaft by the spectral method. Helical gear system used in this paper consists of the driving element, helical gears, shafts, bearings, couplings and load element. In order to describe all translation and rotation motion of helical gears twelve degree of freedom equations of motion by the transmission error excitation are derived. Using these equations, transfer matrix for the helical gear is derived. For the detail behavior of shaft motion, the $12{\times}12$ transfer matrix for the shaft is derived. Transfer matrix for the bearing, coupling, driving element, and load is also derived. Application of the boundary conditions in the assembled transfer matrix produces the forces and displacements in each element of the helical gear system. The effect of the proposed method is shown by numerical example.

  • PDF

Prediction of load transfer depth for cost-effective design of ground anchors using FBG sensors embedded tendon and numerical analysis

  • Do, Tan Manh;Kim, Young-Sang
    • Geomechanics and Engineering
    • /
    • 제10권6호
    • /
    • pp.737-755
    • /
    • 2016
  • The load transfer depth of a ground anchor is the minimum length required to transfer the initial prestressing to the grout column through the bonded part. A thorough understanding of the mechanism of load transfer as well as accurate prediction of the load transfer depth are essential for designing an anchorage that has an adequate factor of safety and satisfies implicit economic criteria. In the current research, experimental and numerical studies were conducted to investigate the load transfer mechanism of ground anchors based on a series of laboratory and field load tests. Optical FBG sensors embedded in the central king cable of a seven-wire strand were successfully employed to monitor the changes in tensile force and its distribution along the tendons. Moreover, results from laboratory and in-situ pullout tests were compared with those from equivalent case studies simulated using the finite difference method in the FLAC 3D program. All the results obtained from the two proposed methods were remarkably consistent with respect to the load increments. They were similar not only in trend but also in magnitude and showed more consistency at higher pullout loading stages, especially the final loading stage. Furthermore, the estimated load transfer depth demonstrated a pronounced dependency on the surrounding ground condition, being shorter in hard ground conditions and longer in weaker ones. Finally, considering the safety factor and cost-effective design, the required bonded length of a ground anchor was formulated in terms of the load transfer depth.

비선형 주.쌍대내점법을 이용한 부하공급능력의 산정에 기반한 전력수송능력의 평가 (Evaluation of Transfer Capability based on Load Supplying Capability Calculation using Nonlinear Primal-Dual Interior Point Method)

  • 정민화;이병준;송길영
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권4호
    • /
    • pp.161-167
    • /
    • 2000
  • This paper presents a new methodology that can evaluate transfer capability of composite power systems from the adequacy point of view in power system planning stages. First of all, to evaluate practical load supplying capability, nonlinear optimization problems of maximum load supplying capability(MLSC) and economic load supplying capability(ELSC) are formulated and solved by nonlinear primal-dual interior point method. Here, physical constraints considered in the optimization problems are the limits of bus voltage, line overloading, and real & reactive power generation. Also, an evaluation method of transfer capability is presented based on margins calculated by the MLSC and ELSC. Especially, to evaluate transfer capability flexibly, simple indices such as expected MLSC, transfer capability margin, and power not supplied are respectively proposed by considering (N-1) line outage probability. Numerical results on IEEE RTS 24, IEEE 118, and IEEE 300 bus system show that the proposed algorithm is effective and useful for power system planning stages.

  • PDF

하중전이법의 간편 적용 (Simplified Application of Load Transfer Method)

  • 이승현;이수형
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.2403-2407
    • /
    • 2012
  • 압축하중을 받는 말뚝의 하중-침하관계를 구하기 위한 하중전이법에서는 말뚝을 유한개의 요소로 분할하고 각각의 요소들에 대하여 말뚝주면변위와 주면 전이하중 그리고 말뚝선단변위와 선단저항력 사이의 적합조건으로부터 말뚝 요소의 단면력과 변위를 계산하게 된다. 통상적인 하중전이법에 의할 경우 모든 말뚝요소들에 대하여 하중-변위 사이의 적합조건을 만족하도록 반복계산을 수행해야 하므로 계산량이 과다한 단점이 있다. 본 연구에서는 압축하중을 받는 말뚝에 대한 미분방정식을 유한차분식으로 정식화하여 말뚝 바닥요소를 제외한 요소에 대해서는 반복계산 없이 직접 말뚝 단면력과 변위량을 계산할 수 있는 간편 계산법을 도입하였다. 간편 계산법에 의한 계산결과를 기존의 해석자료와 비교하여 보았는데 하중-침하관계와 말뚝 단면력 분포가 일치함을 알 수 있었다.

유한요소해석을 통한 암반에 근입된 현장타설말뚝의 하중전이거동 분석 (FE Analysis of Rock-Socketed Drilled Shafts Using Load Transfer Method)

  • 설훈일;정상섬;김영호
    • 한국지반공학회논문집
    • /
    • 제24권12호
    • /
    • pp.33-40
    • /
    • 2008
  • 본 연구에서는 유한요소해석을 이용하여 암반에 근입된 현장타설말뚝의 말뚝-지반 상호작용즉, 지반의 연속성을 고려한 하중전이해석을 수행하였다. 이를 위하여 주면 하중전이함수를 사용자 정의의 경계면 모델(FRIC)로 구현하여 말뚝지반의 미끄러짐 거동과 하중전이 거동을 모델링 하였다. 본 연구결과, 주면마찰력에 의해 발생되는 선단침하량으로 대변되는 지반 연속성 영향은 주면마찰력이 극한상태로 도달할 때까지 증가함을 알 수 있었으며, 말뚝직경과 암반계수의 비(D/$E_{mass}$), 전체하중에서 주면마찰력의 비($R_s$/Q)에 영향을 받는 것으로 나타났다. 현장재하시험 사례와의 비교분석 결과, FRIC을 이용한 유한요소해석방법은 말뚝의 하중전이 거동과 말뚝-지반 상호작용 효과(coupling effect)를 적절히 나타낼 수 있었으며, 말뚝의 거동을 예측하는데 크게 개선되었음을 확인하였다.

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

TPA 기법을 이용한 건물 내 설비 동하중 산정 (Estimation of Dynamic Load of the Utility in Building by TPA Method)

  • 정민기;이성수;김용구;안상경;이상엽
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.773-780
    • /
    • 2009
  • The facility equipments generate dynamic force on building floor and the force can be measured with force transducer. However, this method depends on the measuring capacity or range of sensor, or mounts installation condition of equipments. Because of this restricting condition on force measuring system, this paper suggests a indirect method, the TPA(transfer path analysis) method, that produces a closely approximate dynamic force of equipments. This method calculates the dynamic force by using transfer response function. Firstly, the calculated dynamic force of impact load and continuous load was respectively compared with the sensor-measured value to examine the accuracy of TPA method. After that, the dynamic force and response induced by large facility equipments - a cooling tower, AHU and a large ventilator - were calculated by TPA method and the validity of these value were examined.