• Title/Summary/Keyword: linear maps

Search Result 211, Processing Time 0.021 seconds

Analysis of Response behaviors of offshore mooring structures by a piecewise-linear system (구분적선형시스템을 이용한 해양 구조물의 거동분석)

  • 마호성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.251-265
    • /
    • 1997
  • A piecewise-linear system is utilized to model the offshore mooring system. The approximated piecewise-linear restoring force is obtained to be compared with the analytically derived restoring force of a mooring system. Two systems are compared to verify the applicability of the piecewise-linear system to evaluate responses of the mooring system. Using the piecewise-linear system, the response behaviors of mooring systems are examined under various excitations. Nonlinearity of the system and effects of both system and excitation parameters are intensively examined. System responses are identified mainly by observing Poincare maps. The mooring system is found to have various types of responses such as regular harmonic, subharmonic and complex nonlinear behaviors, including chaos by utilizing a piecewise-linear system. Various values of parameters are applied to determine the effects of parameters upon system responses. Response domains are determined by establishing parametric maps.

  • PDF

LINEAR MAPS PRESERVING 𝓐𝓝-OPERATORS

  • Golla, Ramesh;Osaka, Hiroyuki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.831-838
    • /
    • 2020
  • Let H be a complex Hilbert space and T : H → H be a bounded linear operator. Then T is said to be norm attaining if there exists a unit vector x0 ∈ H such that ║Tx0║ = ║T║. If for any closed subspace M of H, the restriction T|M : M → H of T to M is norm attaining, then T is called an absolutely norm attaining operator or 𝓐𝓝-operator. In this note, we discuss linear maps on B(H), which preserve the class of absolutely norm attaining operators on H.

LINEAR MAPS PRESERVING PAIRS OF HERMITIAN MATRICES ON WHICH THE RANK IS ADDITIVE AND APPLICATIONS

  • TANG XIAO-MIN;CAO CHONG-GUANG
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.253-260
    • /
    • 2005
  • Denote the set of n ${\times}$ n complex Hermitian matrices by Hn. A pair of n ${\times}$ n Hermitian matrices (A, B) is said to be rank-additive if rank (A+B) = rank A+rank B. We characterize the linear maps from Hn into itself that preserve the set of rank-additive pairs. As applications, the linear preservers of adjoint matrix on Hn and the Jordan homomorphisms of Hn are also given. The analogous problems on the skew Hermitian matrix space are considered.

ON THE HOLONOMIZATION OF SEMIHOLONOMIC JETS

  • MIKULSKI, WLODZIMIERZ M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1365-1373
    • /
    • 2015
  • We find all ${\mathcal{F}}{\mathcal{M}}_m$-natural operators A transforming torsion free classical linear connections ${\nabla}$ on m-manifolds M into base preserving fibred maps $A({\nabla}):{\bar{J}}^rY{\rightarrow}J^rY$ for ${\mathcal{F}}{\mathcal{M}}_m$-objects Y with bases M, where ${\bar{J}}^r$, $J^r$ are the semiholonomic and holonomic jet functors of order r on the category ${\mathcal{F}}{\mathcal{M}}_m$ of fibred manifolds with m-dimensional bases and their fibred maps with embeddings as base maps.

LINEAR DERIVATIONS IN BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.443-447
    • /
    • 2001
  • The main goal of this paper is to show the following: Let d and g be (continuous or discontinuous) linear derivations on a Banach algebra A over a complex field C such that $\alphad^3+dg$ is a linear Jordan derivation for some $\alpha\inC$. Then the product dg maps A into the Jacobson radical of A.

  • PDF

REGULAR BRANCHED COVERING SPACES AND CHAOTIC MAPS ON THE RIEMANN SPHERE

  • Lee, Joo-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.507-517
    • /
    • 2004
  • Let (2,2,2,2) be ramification indices for the Riemann sphere. It is well known that the regular branched covering map corresponding to this, is the Weierstrass P function. Lattes [7] gives a rational function R(z)= ${\frac{z^4+{\frac{1}{2}}g2^{z}^2+{\frac{1}{16}}g{\frac{2}{2}}$ which is chaotic on ${\bar{C}}$ and is induced by the Weierstrass P function and the linear map L(z) = 2z on complex plane C. It is also known that there exist regular branched covering maps from $T^2$ onto ${\bar{C}}$ if and only if the ramification indices are (2,2,2,2), (2,4,4), (2,3,6) and (3,3,3), by the Riemann-Hurwitz formula. In this paper we will construct regular branched covering maps corresponding to the ramification indices (2,4,4), (2,3,6) and (3,3,3), as well as chaotic maps induced by these regular branched covering maps.

SPHERES IN THE SHILOV BOUNDARIES OF BOUNDED SYMMETRIC DOMAINS

  • Kim, Sung-Yeon
    • The Pure and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.35-56
    • /
    • 2015
  • In this paper, we classify all nonconstant smooth CR maps from a sphere $S_{n,1}{\subset}\mathbb{C}^n$ with n > 3 to the Shilov boundary $S_{p,q}{\subset}\mathbb{C}^{p{\times}q}$ of a bounded symmetric domain of Cartan type I under the condition that p - q < 3n - 4. We show that they are either linear maps up to automorphisms of $S_{n,1}$ and $S_{p,q}$ or D'Angelo maps. This is the first classification of CR maps into the Shilov boundary of bounded symmetric domains other than sphere that includes nonlinear maps.

THE KERNELS OF THE LINEAR MAPS OF FINITE GROUP ALGEBRAS

  • Dan Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.45-64
    • /
    • 2024
  • Let G be a finite group, K a split field for G, and L a linear map from K[G] to K. In our paper, we first give sufficient and necessary conditions for Ker L and Ker L ∩ Z(K[G]), respectively, to be Mathieu-Zhao spaces for some linear maps L. Then we give equivalent conditions for Ker L to be Mathieu-Zhao spaces of K[G] in term of the degrees of irreducible representations of G over K if G is a finite Abelian group or G has a normal Sylow p-subgroup H and L are class functions of G/H. In particular, we classify all Mathieu-Zhao spaces of the finite Abelian group algebras if K is a split field for G.