$R[X]$ LINEAR MAPS OF THE MACAULAY-NORTHCOTT MODULE

Sangwon Park

1. Introduction

Northcott in $[3]$ considered the module $K\left[x^{-1}\right]$ of inverse polynomials over the polynomial ring $K[x]$ (with K a field). The idea for this module came from Macaulay's work in [1]. McKerrow in [2] generalized Northcott's work and considered the module $M\left[x^{-1}\right]$ over $R[x]$ (with R a ring and M a left R-module). If E is an injective left R-module and R is left noetherian then $E\left[x^{-x}\right]$ is an injective left $R[x]$-module (see [2]). In [4] and [5] we studied the behaviors of these so-called Macaulay-Northcott modules when we apply the torsion and extension functors to them. In this paper we will consider the $R[x]$-linear maps of these modules.

Definition 1.1. Let R be a ring and M be a left R-module then $M\left[x^{-1}\right]$ is a left $R[x]$-module defined by

$$
x\left(m_{0}+m_{1} x^{-1}+\cdots+m_{n} x^{-n}\right)=m_{1}+m_{2} x^{-1}+\cdots+m_{n} x^{-n+1} .
$$

We call $M\left[x^{-1}\right]$ a Macaulay-Northcott Module.
Definition 1.2. Let \mathcal{C} be the category of left R-module and \mathcal{D} be the category of left $R[x]$-module. Let $f:_{R} M \rightarrow_{R} N$ be a linear map, then $T: \mathcal{C} \rightarrow \mathcal{D}$ defined by $T(M)=M\left[x^{-1}\right]$ and $T(f)=f$ (where $\left.f\left(m_{0}+m_{1} x^{-1}+\cdots+m_{n} x^{-n}\right)=f\left(m_{0}\right)+f\left(m_{1}\right) x^{-1}+\cdots+f\left(m_{n}\right) x^{-n}\right)$ is a functor between \mathcal{C} and \mathcal{D}. We call T the Macaulay-Northcott Functor.

Recerved October 10, 1993

Theorem 1.3. There is a natural isomorphism

$$
\operatorname{Hom}_{R[x]}\left(M\left[x^{-1}\right], N\left[x^{-1}\right]\right) \cong \operatorname{Hom}_{R}(M, N)[[x]] .
$$

Proof. See Theorem 4.1 [4].
Suppose $\phi: M \rightarrow N$ is a R-linear map, then we have the oh risus $\operatorname{map} M\left[x^{-1}\right] \rightarrow N\left[x^{-1}\right]$, namely $\phi+0 \cdot x+0 \cdot x^{2}+\cdots \in \operatorname{Hom}_{R}(M, N)[[x]]$.

2. The Macaulay-Northcott Module

Proposition 2.1. Let M be an essential extension of N an a lft R-module then $M\left[x^{-1}\right]$ is an essential extension of $N\left[x^{-1}\right]$.

Proof. Let $m_{0}+m_{1} x^{-1}+\cdots+m_{t} x^{-2} \in M\left[x^{-1}\right]$ w.l.o.g. let $m_{2} \neq 0$ then there is $r_{i} \in R, r_{2} \neq 0$ such that $m_{2} r_{i} \in N, m_{2} r_{i} \neq 0$. So $r_{1} x_{i}\left(m_{0}+m_{1} x^{-1}+\cdots+m_{1} x^{-1}\right)=r_{2} m_{i} \in N\left[x^{-1}\right]$. Hence $M\left[x^{-1}\right]$ is an essential extension of $N\left[x^{-1}\right]$.

Remark 2.2. Let R be left noetherian. If E is an injective envelope of M then $E\left[x^{-1}\right]$ is an injective envelope of $M\left[x^{-1}\right]$.

Note that if ${ }_{R} M \subset_{R} N$, then

$$
\frac{N\left[x^{-1}\right]}{M\left[x^{-1}\right]} \cong \frac{N}{M}\left[x^{-1}\right] .
$$

Proposition 2.3. If $0 \rightarrow M \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots$ is a minimal injective resolution of M as a left R-module then

$$
0 \rightarrow M\left[x^{-1}\right] \rightarrow E^{0}\left[x^{-1}\right] \rightarrow E^{1}\left[x^{-1}\right] \rightarrow \cdots
$$

is a minimal injective resolution.
Proof. Let $0 \rightarrow M \xrightarrow[\rightarrow]{\epsilon} E^{0} \xrightarrow{d_{0}} E^{1} \xrightarrow{d_{1}} \cdots$ and $0 \rightarrow M\left[x^{-1}\right] \xrightarrow{\vec{\epsilon}}$ $E^{0}\left[x^{-1}\right] \xrightarrow{d_{0}} E_{1}\left[x^{-1}\right] \xrightarrow{d_{1}} \cdots$. Let $m_{0}+m_{1} x^{-1}+\cdots+m_{2} x^{-1} \in M\left[x^{-1}\right]$. Then $\vec{d}_{0} \circ \bar{\epsilon}\left(m_{0}+m_{1} x^{-1}+\cdots+m_{2} x^{-1}\right)=\left(d_{0}+0 \cdot x+0 \cdot x^{2}+\cdots\right) \circ(\epsilon+$ $\left.0 \cdot x+0 \cdot x^{2}+\cdots\right)\left(m_{0}+\cdots+m_{1} x^{-t}\right)=d_{0}\left(\epsilon\left(m_{0}\right)\right)+d_{0}\left(\epsilon\left(m_{1}\right)\right) x^{-1}+$ $\cdots+d_{0}\left(\epsilon\left(m_{\mathbf{t}}\right)\right) x^{-1}=0$ So im $(\bar{\epsilon}) \subset$ ker $\left(\bar{d}_{0}\right)$. Let $e_{0}+e_{1} x^{-1}+\cdots+$
$e_{i} x^{-i} \in \operatorname{ker}\left(\bar{d}_{0}\right)$. Then $d\left(e_{0}\right)+d\left(e_{1}\right) x^{-1}+\cdots+d\left(e_{\imath}\right) x^{-i}=0$. So $d\left(e_{0}\right)=d\left(e_{1}\right)=\cdots=d\left(e_{2}\right)=0$. So $e_{0}, e_{1}, \ldots, e_{1} \in \operatorname{im}(\epsilon)$. So there exist $m_{0}, m_{1}, \ldots, m_{2}$ such that $\epsilon\left(m_{0}\right)=e_{0}, \epsilon\left(m_{1}\right)=e_{1}, \ldots, \epsilon\left(m_{1}\right)=e_{2}$. Now $\bar{\epsilon}\left(m_{0}+m_{1} x^{-1}+\cdots+m_{\imath} x^{-2}\right)=e_{0}+e_{1} x^{-1}+\cdots+e_{2} x^{-\tau}$. So $\operatorname{im}(\bar{\epsilon})=\operatorname{ker}\left(\bar{d}_{0}\right)$. By the same process we have $\operatorname{im}\left(\bar{d}_{k}\right)=\operatorname{ker}\left(\bar{d}_{k+1}\right)$. And by Remark 2.2, $E^{k+1}\left[x^{-1}\right]$ is an injective envelope of $E^{k}\left[x^{-1}\right]$. So $0 \rightarrow M\left[x^{-1}\right] \rightarrow E^{0}\left[x^{-1}\right] \rightarrow \cdots$ is a minimal injective resolution of $M\left[x^{-1}\right]$ as a left $R[x]$-module.

PROPOSITION 2.4. Let $\phi: M\left[x^{-1}\right]$ be $R[x]$-linear map.
Then $\phi(M) \subset M$.
Proof.. Suppose $m \in M$ and $\phi(m)=f \notin M$ and $f=m_{0}+m_{1} x^{-1}+$ $\cdots+m_{n} x^{-n}$. Then for $x \in R[x], \phi(x m)=0$ and $x \phi(m)=m_{1}+$ $m_{2} x^{-1}+\cdots+m_{n} x^{-n} \neq 0$ So $x \phi(m) \neq \phi(x m)$. This contradicts the fact that ϕ is a $R[x]$-linear map. So $\phi(M) \subset M$.

Proposition 2.5. Let $\phi: M\left[x^{-1}\right] \rightarrow M\left[x^{-1}\right]$ be $R[x]$-linear map.

1) If $M \xrightarrow{M|\phi|_{M}} M$ is one to one so is ϕ.
2) If $M \xrightarrow{M|\phi|_{M}} M$ is an isomorphism so is ϕ.

Proof of 1). Suppose ϕ is not one to one. Let $h=\operatorname{ker}(\phi)$ for $h=m_{0}+m_{1} x^{-1}+\cdots+m_{n} x^{-n}$ and w.l.o.g. $m_{n} \neq 0$. Then $\phi(h)=$ $\phi\left(m_{0}+m_{1} x^{-1}+\cdots+m_{n} x^{-n}\right)=0$. Since ϕ is $R[x]$-linear map, $x \phi\left(m_{0}\right)+$ $x \phi\left(m_{1} x^{-1}\right)+\cdots+x \phi\left(m_{n} x^{-n}\right)=\phi\left(m_{1}\right)+\phi\left(m_{2} x^{-1}\right)+\cdots+\phi\left(m_{n} x^{-n+1}\right)$
$=0$. Multiply x on the left hand side again, then we have $\phi\left(m_{2}\right)+$ $\phi\left(m_{3} x^{-1}\right)+\cdots+\phi\left(m_{n} x^{-n+2}\right)=0$. Repeat this process until we have $\phi\left(m_{n}\right)=0$. So $m_{n} \in \operatorname{ker}\left(M|\phi|_{M}\right)$. This contradicts the fact that ${ }_{M}|\phi|_{M}$ is 1-1. So ϕ is 1-1.

Proof of 2). Suppose ${ }_{M}|\phi|_{M}$ is an isomorphism. Then by 1) ϕ is one to one so we want to show ϕ is onto. Let $f \in M\left[x^{-1}\right]$ and $f=m_{0}+$ $m_{1} x^{-1}+\cdots+m_{1} x^{-\imath}$. Suppose $\phi(g)=f$ for $g \in M\left[x^{-\imath}\right]$. Then $x^{1} \phi(g)=$ m_{i}. So let $g=n_{0}+n_{1} x^{-1}+\cdots+n_{i} x^{-x}$. Then $x^{2} g=n_{i}$. Now choose n_{i} such that $\phi\left(n_{\imath}\right)=m_{2}$. Let $\phi\left(n_{i} x^{-1}\right)=c_{i-1}+m_{i} x^{-1}$. Choose n_{i-1} such that $\phi\left(n_{2-1}\right)=m_{i-1}-c_{2-1}$. And let $\phi\left(n_{i-1} x^{-1}\right)+\phi\left(n_{t} x^{-2}\right)=$ $c_{1-2}+m_{t-1} x^{-1}+m_{1} x^{-2}$. Choose n_{x-2} such that $\phi\left(n_{i-2}\right)=n_{t-2}-c_{1-2}$. By this process we can get n_{2-3}, \ldots, n_{0} and we have $\phi(g)=f$. So ϕ is onto. So ϕ is an assumption.

PROPOSITION 2.6. $\sigma: M\left[\left[x^{-1}\right]\right] / M\left[x^{-1}\right] \rightarrow M\left[\left[x^{-1}\right]\right] / M\left[x^{-1}\right]$ by $f+M\left[x^{-1}\right] \rightarrow x\left(f+M\left[x^{-1}\right]\right)$ is an isomorphism.

Proof. Let $f+M\left[x^{-1}\right] \in \operatorname{ker}(\sigma)$ and let $f=a_{0}+a_{1} x^{-1}+a_{2} x^{-2}+\cdots$. Then $\sigma\left(f+\left[M x^{-1}\right]\right)=x\left(f+M\left[x^{-1}\right]\right)=M\left[x^{-1}\right]$. So $f+M\left[x^{-1}\right]=$ $M\left[x^{-1}\right]$. So f is one to one. Let $f+M\left[x^{-1}\right]=\left(a_{0}+a_{1} x^{-1}+a_{2} x^{-2}+\right.$ $\cdots)+M\left[x^{-1}\right] \in M\left[\left[x^{-1}\right]\right] / M\left[x^{-1}\right]$. Let $g+M\left[x^{-1}\right]=\left(a_{0} x^{-1}+a_{2} x^{-2}+\right.$ $\left.a_{2} x^{-3}+\cdots\right)+M\left[x^{-1}\right]$, then $\sigma\left(g+M\left[x^{-1}\right]\right)=f+M\left[x^{-1}\right]$. Hence σ is onto. So σ is an isomorphism.

THEOREM 2.7. Let $\phi: E\left[x^{-1}\right] \rightarrow E\left[x^{-1}\right]$ be a linear map for ${ }_{R} E$ injective, then there is a $\psi: E\left[\left[x^{-1}\right]\right] \rightarrow E\left[\left[x^{-1}\right]\right]$ such that $E\left[x^{-1}\right\}|\psi|_{E\left[x^{-1}\right]}=\phi$. Moreover ψ is not unique in general.

Proof. Since $E\left[\left[x^{-1}\right]\right]$ is an injective left $R[x]$-module we can complete the following diagram

$$
\begin{aligned}
& E\left[x^{-1}\right] \quad \hookrightarrow \\
& \phi \downarrow \\
& E\left[\left[x^{-1}\right]\right]
\end{aligned}
$$

So we have ψ such that $E\left\{x^{-1}\right]|\psi| E\left[x^{-1}\right]=\phi$.
Let $\psi_{1}, \psi_{2}: E\left[\left[x^{-1}\right]\right] \rightarrow E\left[\left[x^{-1}\right]\right]$ and $E\left[x^{-1}\right]\left|\psi_{2}\right|_{E\left[x^{-1}\right]}=\phi$ for $i=$ 1, 2. Then $\left.\psi_{1}\right|_{E\left\{x^{-1}\right]}=\phi,\left.\psi_{2}\right|_{E\left[x^{-1}\right]}=\phi$ and $\psi_{1}-\left.\psi_{2}\right|_{E\left[x^{-1}\right]}=0$. So $E\left[x^{-1}\right] \subset \operatorname{ker}\left(\psi_{1}-\psi_{2}\right)$. So we have an induced map

$$
E\left[\left[x^{-1}\right]\right] / E\left[x^{-1}\right] \rightarrow E\left[\left[x^{-1}\right]\right] \text { by } f+E\left[x^{-1}\right]=\left(\psi_{1}-\psi_{2}\right)(f)
$$

Now consider the following. Let $\phi: E\left[x^{-1}\right] \rightarrow E\left[x^{-1}\right]$ be a linear map. Let $\psi_{1}: E\left[\left[x^{-1}\right]\right] \rightarrow E\left[\left[x^{-1}\right]\right]$ such that $E\left[x^{-1}\right]\left|\psi_{1}\right|_{E\left[x^{-1}\right]}=\phi$. Let $\sigma: E\left[\left[x^{-1}\right]\right] / E\left[x^{-1}\right] \rightarrow E\left[\left[x^{-1}\right]\right]$ be a non zero linear map, then there is a non zero linear map $\tau: E\left[\left[x^{-1}\right]\right] \rightarrow E\left[\left[x^{-1}\right]\right]$ such that $\tau(f)=$ $\sigma\left(f+E\left[\left[x^{-1}\right]\right]\right)$ and $E\left[x^{-1}\right] \subset \operatorname{ker}(\tau)$. Let $\psi_{2}: E\left[\left[x^{-1}\right]\right] \rightarrow E\left[\left[x^{-1}\right]\right]$ such that $\psi_{2}=\psi_{1}-\tau$, then

$$
E\left[x^{-1}\right]\left|\psi_{2}\right|_{E\left[x^{-1}\right]}=E\left[x^{-1}\right]\left|\psi_{1}-\tau\right|_{E\left[x^{-1}\right]}=E\left[x^{-1}\right]\left|\psi_{1}\right|_{E\left[x^{-1}\right]}=\phi
$$

So there is ψ_{2} such that $\psi_{1} \neq \psi_{2}$.

EXAMPLE 2.8. Let $R=Z$ and $E=Q$. Let $\phi: Q\left[x^{-1}\right] \rightarrow Q\left[x^{-1}\right]$ be a linear map. Let $\psi_{1}: Q\left[\left[x^{-1}\right]\right] \rightarrow Q\left[\left[x^{-1}\right]\right]$ be a linear map such that $\left.Q\left[x^{-1}\right] \psi_{1}\right|_{Q\left[x^{-1}\right]}=\phi$. Consider $Q\left[\left[x^{-1}\right]\right] / Q\left[x^{-1}\right]$ and $Q\left[\left[x^{-1}\right]\right]$ as left $Z[x]$-modules. Let $f=e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \cdots \in Q\left[\left[x^{1}\right]\right]$. For any non zero $g \in Z[x]$ we claim that $g \cdot f \notin Q[x]$. Suppose $g \cdot f=h \in Q[x]$ and w.l.o.g. $\operatorname{deg} h=n$. Then $h^{(n+1)}(x)=0$, but $(g \cdot f)^{(n+1)}(x) \neq 0$ become $(g \cdot f)^{(n+1)}(x)$ has always $g(x) e^{x}$ term and the degrees of the rest terms are strictly less than the degree of $g(x)$. So $g \cdot f \notin Q[x]$. Let $\bar{f}=1+x^{-1}+\frac{x^{-3}}{2^{\dagger}}+\frac{x^{-3}}{3^{1}}+\cdots \in Q\left[\left[x^{-1}\right]\right]$. For non zero $g \in Z[x]$ we claim $g \cdot \bar{f} \notin Q\left[x^{-1}\right]$. Let $g=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{1-1} x^{2-1}+a_{2} x^{2}$. Then $\left(a_{1}+a_{1-1} x^{-1}+\cdots+a_{0} x^{-i}\right) \cdot \bar{f}$ and $\left(a_{2}+a_{2-1} x+\cdots+a_{0} x^{2}\right) \cdot f$ have some coefficient for each x^{-n} and x^{n} terms. So $\left(a_{2}+a_{2-1} x^{-1}+\cdots+\right.$ $\left.a_{0} x^{-2}\right) \cdot \bar{f} \notin Q\left[x^{-1}\right]$. So $x^{2}\left[\left(a_{2}+a_{5-1} x^{-1}+\cdots+a_{0} x^{-2}\right) \cdot \bar{f}\right] \notin Q\left[x^{-1}\right]$. So $g \cdot \bar{f} \notin Q\left[x^{-1}\right]$. So there is a linear map $\sigma:\left[\left[x^{-1}\right]\right] / Q\left[x^{-1}\right] \rightarrow Q\left[\left[x^{-1}\right]\right]$. So by the above argument, we have $\psi_{2}: Q\left[\left[x^{-1}\right]\right] \rightarrow Q\left[\left[x^{-1}\right]\right]$ such that $\psi_{2} \neq \psi_{1}$ and $Q\left[x^{-1}\right]\left|\psi_{2}\right|_{Q\left[x^{-1}\right]}=\phi$.

References

1. F S. Macaulay, The Algebrazc Theory of Modular System, Cambridge Tracts 19 (1916)
2 A.S McKerrow, On the Injective Dimension of Modules of Power Series, Quart J Math. Oxford (3) 25 (1974), 359-368.
2. D.G. Northcott, Injectrve Envelopes and Inverse Polynomzals, London Math Soc. (2), 3 (1974), 290-296
4 S Park, Inverse Ploynomials and Injective Covers, Comm Algebra 21 (1993), 4599-4613
3. S. Park, The Macaulay-Northcott Functor, to appear Archiv der Mathematik

Department of Matheratics
Dong-A University
Pusasn, Korea

