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ON THE HOLONOMIZATION OF SEMIHOLONOMIC JETS

W lodzimierz M. Mikulski

Abstract. We find all FMm-natural operators A transforming torsion
free classical linear connections ∇ on m-manifolds M into base preserving
fibred maps A(∇) : J

r

Y → JrY for FMm-objects Y with bases M ,

where J
r

, Jr are the semiholonomic and holonomic jet functors of order
r on the category FMm of fibred manifolds with m-dimensional bases
and their fibred maps with embeddings as base maps.

0. Introduction

All manifolds considered in the paper are assumed to be finite dimensional,
without boundaries, Hausdorff, second countable and smooth (of class C∞).
Maps between manifolds are assumed to be of class C∞.

The classical theory of higher order jets was introduced by C. Ehresmann,
[2]. For semiholonomic jets, we refer to the paper by P. Libermann, [8]. Higher
order jets are a very powerful tool in differential geometry and in mathematical
physics. For example, holonomic jets globalize the theory of differential systems
and semiholonomic jets play an important role in the calculus of variations and
in the theory of partial differential equations, [11], [12]. The theory of jets and
connections forms the geometrical background for field theories and theoretical
physics, [7], [9]. Holonomic and semiholonomic prolongation functors Jr and

J
r
on the category FMm of fibred manifolds with m-dimensional bases and

their fibred maps with embeddings as base maps are classical examples of fiber
product preserving bundle functors (i.e., bundle functors F in the sense of [5] on
FMm such that F (Y1×M Y2) = FY1×M FY2 for any FMm-objects Y1 and Y2
with the same basisM). The full description of fiber product preserving bundle
functors F on FMm in terms of their corresponding triples (AF , HF , tF ) can
be found in [6] (see also [3]).

If r = 2, we have the well-known symmetrization (holonomization) J
2
Y →

J2Y of second order semiholonomic jets, i.e., we can produce canonically sec-
ond order holonomic jets from second order semiholonomic ones. In [1], M.
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Doupovec and the author proved that for r ≥ 3 and m ≥ 2 there is no sym-
metrization (holonomization) J

r
Y → JrY , i.e., we cannot produce canonically

r-order holonomic jets from r-order semiholonomic ones. So, to obtain a sym-
metrization J

r
Y → JrY (for r ≥ 3 and m ≥ 2), the using of an auxiliary

object is unavoidable. In [10], to produce a symmetrization J
r
Y → JrY (for

r ≥ 3 and m ≥ 2), we used classical linear connection ∇ on the base of Y . The

symmetrization J
r
Y → JrY depending on torsion free classical linear connec-

tion ∇ on the base of Y can be interpreted as an FMm-natural operator S
transforming torsion free classical linear connections ∇ on m-manifoldsM into
base preserving fibred maps S(∇) : J

r
Y → JrY for FMm-objects Y with

bases M .
In general, let F 1, F 2 be fiber product preserving bundle functors on FMm

of order r and (AF 1

, HF 1

, tF
1

) and (AF 2

, HF 2

, tF
2

) be their corresponding
triples. An FMm-natural operator A (in the sense of [5]) transforming torsion
free classical linear connections∇ onm-manifoldsM into base preserving fibred
maps A(∇) : F 1Y → F 2Y for FMm-objects Y with bases M is an FMm-
invariant family A of regular operators

A : Qτ (M) → C∞
M (F 1Y, F 2Y )

for FMm-objects Y with bases M , where Qτ (M) is the space of torsion free

classical linear connections on M and C∞
M (F 1Y, F 2Y ) is the space of base pre-

serving fibred maps F 1Y → F 2Y . The FMm-invariance of A means that
if f : Y 1 → Y 2 is an FMm-map with the base map f : M1 → M2 and

∇1 ∈ Qτ (M1) and ∇2 ∈ Qτ (M2) are f -related, then A(∇1) and A(∇2) are f

related (i.e., F 2f ◦ A(∇1) = A(∇2) ◦ F 1f). The regularity of A means that
A transforms smoothly parametrized families of torsion free classical linear
connections into smoothly parametrized families of fibred maps.

In [10], we studied the existence problem ofFMm-natural operatorsA trans-
forming torsion free classical linear connections ∇ on m-manifolds M into base
preserving fibred maps A(∇) : F 1Y → F 2Y for FMm-objects Y with bases
M . We characterized fiber product preserving bundle functors F 1, F 2 on FMm

admitting such FMm-natural operators A by means of the existence of (so-
called) quasi morphisms of admissible triples. Next, in [4], I. Kolář extended
this result to the existence problem of natural maps depending on reduction of
frame bundles.

In the present paper, we study the classification problem of FMm-natural
operators A transforming torsion free classical linear connections ∇ on m-
manifolds M into base preserving fibred maps A(∇) : F 1Y → F 2Y for FMm-
objects Y with basesM , where F 1, F 2 are fiber product preserving bundle func-

tors of order r on FMm with their triples (AF 1

, HF 1

, tF
1

) and (AF 2

, HF 2

, tF
2

)
respectively. We deduce that any such A is of finite order and that there is
the bijection between the space of such natural operators A of finite order

q ≥ r and the space of GL(m)-invariant maps ΦA : Qq × AF 1

→ AF 2

such
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that µξ : AF 1

→ AF 2

is an algebra homomorphism with tF
2

= µξ ◦ tF
1

for

any ξ ∈ Qq, where Qq is defined in Item 1 and µξ(v) := ΦA(ξ, v), v ∈ AF 1

(see, Theorem 1). As an application, we describe all FMm-natural operators
A transforming torsion free classical linear connections ∇ on m-manifolds M
into base preserving fibred maps A(∇) : J

r
Y → JrY for FMm-objects Y with

bases M , where J
r
, Jr are the semiholonomic and holonomic jet functors of

order r on FMm, respectively.

1. Invariant maps from natural operators

Given a non negative integer q, let Qq be the (vector) space of q-jets at
0 ∈ R

m of torsion free classical linear connections ∇ = (∇i
jk) on R

m (∇i
jk are

the Christofell symbols of ∇ in the identity map) such that

(1)

m∑

j,k=1

∇i
jk(x)x

jxk = 0, i = 1, . . . ,m.

The condition (1) means that the identity map idRm is ∇-normal with center
0 (and vice-versa).

Let F 1 and F 2 be fiber product preserving bundle functors on FMm of

order r and (AF 1

, HF 1

, tF
1

) and (AF 2

, HF 2

, tF
2

) be their triples.

Lemma 1. Let A be an FMm-natural operator of finite order q ≥ r trans-

forming torsion free classical linear connections ∇ on m-manifolds M into base

preserving fibred maps A(∇) : F 1Y → F 2Y for FMm-objects Y with bases M .

(i) Given ξ = j
q
0∇ ∈ Qq, a map µξ : AF 1

→ AF 2

, µξ(v) := A(∇)(v),

v ∈ AF 1

= F 1
0 (R

m × R) is a (well-defined because of the order argument)

homomorphism of Weil algebras and µξ ◦ t
F 1

= tF
2

.

(ii) The resulting map ΦA : Qq ×AF 1

→ AF 2

, ΦA(ξ, v) := µξ(v) is GL(m)-
invariant, i.e., it satisfies the condition

ΦA(B.ξ,HF 1

(B)(v)) = HF 2

(B)(ΦA(ξ, v))

for any B ∈ GL(m), v ∈ AF 1

and ξ = j
q
0∇ ∈ Qq, where B.ξ = j

q
0(B∗∇) is the

usual action.

Proof. Let F̃ 1, F̃ 2 be bundle functors on Mf (=the category of manifolds and
maps) given by

F̃ iN = F i
0(R

m ×N) and F̃ if = F i(idRm × f)|F̃ iN : F̃ iN → F̃ iN1

for any manifold N and any map f : N → N1. They are product preserving

(as F i are fiber product preserving) and AF i

are their Weil algebras (as AF i

=

F̃ i
R). Given a torsion free classical linear connection ∇ on R

m, the family ν

of maps νN : F̃ 1N → F̃ 2N , νN := A(∇)|F̃ 1N for manifolds N is a natural

transformation F̃ 1 → F̃ 2 of product preserving bundle functors. Then µξ :

AF 1

→ AF 2

is an algebra homomorphism (as µξ = νR).
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For any f : Rm → R we have

µξ(t
F 1

(jr0f)) = A(∇)(F 1
0 (idRm , f)(θF

1

))

= F 2
0 (idRm , f)(A(∇)(θF

1

))

= F 2
0 (idRm , f)(θF

2

)

= tF
2

(jr0f),

where θF
i

is the unique point from F i
0R

m.
By the invariance of A with respect to B × idR, we have

ΦA(B.ξ,HF 1

(B)(v)) = A(B∗∇)(F 1(B × idR)(v))

= F 2(B × idR)(A(∇)(v))

= HF 2

(B)(ΦA(ξ, v))

for any B ∈ GL(m), v ∈ AF 1

and ξ = j
q
0∇ ∈ Qq. �

2. Natural operators from invariant maps

Let F 1, F 2, (AF 1

, HF 1

, tF
1

) and (AF 2

, HF 2

, tF
2

) be as in Item 1.

Lemma 2. Let q ≥ r. Suppose Φ : Qq × AF 1

→ AF 2

is a map such that

for any ξ ∈ Qq the map µξ : AF 1

→ AF 2

, µξ(v) := Φ(ξ, v) is an algebra

homomorphism with µξ ◦ t
F 1

= tF
2

, and suppose that Φ is GL(m)-invariant,

i.e., Φ(B.ξ,HF 1

(B)(v)) = HF 2

(B)(Φ(ξ, v)) for any B ∈ GL(m), ξ ∈ Qq

and v ∈ AF 1

. Then there exists an FMm-natural operator AΦ of order q

transforming torsion free classical linear connections ∇ on m-manifolds M

into base preserving fibred maps AΦ(∇) : F 1Y → F 2Y for FMm-objects Y

with bases M satisfying ΦAΦ

= Φ.
If A is an FMm-natural operator of order q ≥ r transforming torsion free

classical linear connections ∇ on m-manifolds M into base preserving fibred

maps A(∇) : F 1Y → F 2Y for FMm-objects Y with bases M , then AΦA

= A.

Proof. Let Y be an FMm-object with the projection pY : Y →M . According
to the general theory of fiber product preserving bundle functors ([3], [6]), we
have

F iY = {〈jr0ϕ, v〉 ∈ P r(M)[TAF
i

Y,HF i

] | tF
i

(jr0ϕ) = TAF
i

(pY )(v)}.

Let ∇ be a torsion free classical linear connection on M . We define AΦ(∇) :
F 1Y → F 2Y as follows.

Let w ∈ F 1
xY , x ∈ M . Let ϕ be a ∇-normal coordinate system with center

x. There exists a unique v ∈ TAF
1

Y with w = 〈jr0ϕ
−1, v〉. We put

AΦ(∇)(w) := 〈jr0ϕ
−1, µξ(v)〉,
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where ξ = j
q
0(ϕ∗∇) and µξ : TAF

1

Y → TAF
2

Y is the Weil extension of the

algebra homomorphism µξ : AF 1

→ AF 2

, µξ(v) = Φ(ξ, v).
If ψ is an another ∇-normal coordinate system with center x, then ψ = B◦ϕ

for a B ∈ GL(m). Then w = 〈jr0ψ
−1, HF 1

(B)(v)〉, and then

AΦ(∇)(w) = 〈jr0ψ
−1, µB.ξ(H

F 1

(B)(v))〉.

So, to prove that the definition of AΦ(∇)(w) is independent of the choice of
∇-normal coordinate systems with centers x, we have to observe that

〈jr0ψ
−1, µB.ξ(H

F 1

(B)(v))〉 = 〈jr0ϕ
−1, µξ(v)〉.

But, from the GL(m)-invariance of Φ we have µB.ξ = HF 2

(B)◦µξ ◦H
F 1

(B−1).
Then

〈jr0ψ
−1, µB.ξ(H

F 1

(B(v))〉 = 〈jr0ϕ
−1.jr0B

−1, HF 2

(B)(µξ(v))〉

= 〈jr0ϕ
−1, µξ(v)〉.

That is why, AΦ(∇)(w) is a well defined element from P r(M)[TAF
2

Y ].
To see that AΦ(∇)(w) ∈ F 2Y , we have to prove that

tF
2

(jr0ϕ
−1) = TAF

2

(pY )(µξ(v)).

But we have that tF
1

(jr0ϕ
−1) = TAF

1

(pY )(v) as 〈jr0ϕ
−1, v〉 ∈ F 1Y . By the

assumption on µξ we have tF
2

= µξ ◦ t
F 1

. Then

tF
2

(jr0ϕ
−1) = µξ ◦ t

F 1

(jr0ϕ
−1) = µξ ◦ T

AF
1

(pY )(v)

= TAF
2

(pY )(µξ(v)).

That is why, AΦ(∇) : F 1Y → F 2Y is a well-defined map.
AΦ(∇) is smooth because the exponent map Exp∇ is smooth. AΦ(∇t) is

smoothly parametrized if ∇t is because Exp∇t
is smoothly parametrized if ∇t

is.
Now, we prove that AΦ is FMm-invariant. For, let f : Y → Y 1 be an FMm-

map with the underlying map f :M →M1 and ∇ and ∇1 be f -related torsion

free classical linear connections on M and M1. Let w = 〈jr0ϕ
−1, v〉 ∈ F 1

xY ,
x ∈ M , where ϕ is a ∇-normal coordinate system with center x. We see that
ϕ◦f−1 is ∇1-normal with center f(x). Put ξ := jr0(ϕ∗∇)(= jr0((ϕ◦f

−1)∗∇
1)).

Then

F 2f(AΦ(∇)(w)) = F 2f(AΦ(∇)(〈jr0ϕ
−1, v〉))

= F 2f(〈jr0ϕ
−1, µξ(v)〉)

= 〈jr0(f ◦ ϕ−1), TAF
2

f(µξ(v))〉

= 〈jr0(f ◦ ϕ−1, µξ(T
AF

1

f(v))〉

= AΦ(∇1)(〈jr0 (f ◦ ϕ−1), TAF
1

f(v)〉)



1370 W. M. MIKULSKI

= AΦ(∇1)(F 1f(〈jr0ϕ
−1, v〉))

= AΦ(∇1)(F 1f(w)).

That is why, AΦ is f -invariant for any FMm-map f , i.e., AΦ is FMm-invariant.
Clearly, AΦ(∇)|F 1

x
Y depends on jqx∇. (It easily follows from the fact that

j
q+2
0x

((Exp∇)x) depends on j
q
x∇.) That is why, AΦ is of order q.

Let 〈jr0 idRm , v〉 ∈ AF 1

= F 1
0 (R

m × R), where v ∈ TAF
1

(Rm × R) with

tF
1

(jr0 idRm) = TAF
1

(pRm×R)(v). Then v = (tF
1

(jr0 idRm), v1) ∈ TAF
1

(Rm ×

R) = TAF
1

R
m×AF 1

with v1 ∈ AF 1

, and the identification AF 1

= F 1
0 (R

m×R)

is by 〈jr0 idRm , v〉 = v1. We have the similar identification AF 2

= F 2
0 (R

m × R),
too. Under these identifications, the formula

ΦAΦ

(ξ, v) = Φ(ξ, v)

for ξ ∈ Qq and v ∈ AF 1

is a immediate consequence of the formula

AΦ(∇)(〈jr0 idRm , v〉) := 〈jr0 idRm , µξ(v)〉

for ξ = j
q
0∇ ∈ Qq and v ∈ TAF

1

(Rm×R) with tF
1

(jr0 idRm) = TAF
1

(pRm×R)(v).
Now, consider an FMm-natural operator A of finite order q ≥ r trans-

forming torsion free classical linear connections ∇ on m-manifolds M into base
preserving fibred maps A(∇) : F 1Y → F 2Y for FMm-objects with bases M .

From the formula ΦA(ξ, v) = A(∇)(v) for ξ = j
q
0∇ and v ∈ AF 1

= F 1
0 (R

m×R)

and the definition of AΦA

it follows that

(2) AΦA

(∇)(v) = A(∇)(v)

for any torsion free classical linear connection ∇ on R
m with idRm being ∇-

normal with center 0 and any v ∈ F 1
0 (R

m × R). From the invariance of AΦA

and A with respect to (x1, . . . , xm, t1y1, . . . , tnyn) and the permutation of fibred
coordinates it follows that

AΦA

(∇)(v1, . . . , vn) = (AΦA

(∇)(v1), . . . , AΦA

(∇)(vn))

and

(3) A(∇)(v1, . . . , vn) = (A(∇)(v1), . . . , A(∇)(vn))

for any torsion free classical linear connection∇ on R
m and any v = (v1, . . . , vn)

∈ F 1
0 (R

m × R
n) = F 1

0 (R
m × R) × · · · × F 1

0 (R
m × R). Then (2) holds for any

v ∈ F 1
0 (R

m × R
n) and any torsion free classical linear connection ∇ on R

m

with idRm being ∇-normal with center 0. Then from the FMm-invariance of

AΦA

and A it follows that AΦA

(∇)(v) = A(∇)(v) for any torsion free classical

linear connection ∇ on M and any v ∈ F 1
xY , x ∈M , i.e., AΦA

= A. �
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3. Finite orders of natural operators

Let F 1 and F 2 be as in Item 1.
Because of finite order theorems from [5], we have easily the following lemma.

Lemma 3. Any FMm-natural operator A transforming torsion free classical

linear connections ∇ onm-manifoldsM into base preserving fibred maps A(∇) :
F 1Y → F 2Y for FMm-objects Y with bases M is of finite order.

Schema of the proof. Because of finite order theorems ([5]), there exists a finite
number q such that

j
q
0∇

1 = j
q
0∇

2 ⇒ A(∇1)(v) = A(∇2)(v)

for any torsion free classical linear connections ∇1 and ∇2 respective close to
∇0 and any v ∈ F 1

0 (R
m × R) respective close to the fiber homothety invariant

element c ∈ F0(R
m ×R). On the other hand, given torsion free classical linear

connections ∇1 and ∇2 on R
m and v ∈ F 1

0 (R
m×R) we can find s, t ∈ R\0 such

that for f = (tx1, . . . , txm, sy), the connections f∗∇
1 and f∗∇

2 are sufficiently
close to ∇o and F 1f(v) is sufficiently close to c. Now, the lemma follows from
the FMm-invariance of A and formula (3). �

4. The main result

Summing up, we have the following theorem.

Theorem 1. Let F 1, F 2, (AF 1

, HF 1

, tF
1

), (AF 2

, HF 2

, tF
2

) and Qq be as in

Item 1. There is the bijection between the space of FMm-natural operators

A of finite order q ≥ r transforming torsion free classical linear connections

∇ on m-manifolds M into base preserving fibred maps A(∇) : F 1Y → F 2Y

for FMm-objects Y with bases M and the space of GL(m)-invariant maps

Φ : Qq ×AF 1

→ AF 2

such that µξ : A
F 1

→ AF 2

, µξ(v) := Φ(ξ, v) is an algebra

homomorphism with µξ ◦ t
F 1

= tF
2

for any ξ ∈ Qq. Moreover, any FMm-

natural operator A transforming torsion free classical linear connections ∇ on

m-manifolds M into base preserving fibred maps A(∇) : F 1Y → F 2Y for

FMm-objects Y with bases M is of finite order.

5. An application

As an application of Theorem 1, we describe all FMm-natural operators
A transforming torsion free classical linear connections ∇ on m-manifolds M
into base preserving fibred maps A(∇) : J

r
Y → JrY for FMm-objects Y with

bases M , where J
r
, Jr are the semiholonomic and holonomic jet functors of

order r on FMm, respectively.
We know that J

r
and Jr are fiber product preserving bundle functors on

FMm of order r. Let (A
r
, H

r
, t

r
) and (Ar , Hr, tr) be the corresponding triples
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to J
r
and Jr respectively. Vector GL(m)-spaces A

r
and Ar (with respect to

H
r

|GL(m) and H
r
|GL(m)) are of the form

A
r
= ⊕r

k=0 ⊗
k
R

m∗ and Ar = ⊕r
k=0S

k
R

m∗

with the standard tensor actions of GL(m) (this is an easy observation, e.g. by
the standard coordinate description), see [10]. Clearly, tr = id. The algebra

multiplications of A
r
and Ar are given by a rather complicated formulas, which

will not be used in the sequel. Clearly, the obvious inclusion I : Ar → A
r
is a

morphism I : (Ar , Hr, tr) → (A
r
, H

r
, t

r
) of triples (the one corresponding to

the inclusion JrY ⊂ J
r
Y ), see [10]. In particular, t

r
= I.

By Proposition 1 in [10], the usual symmetrization s : A
r
→ Ar is a GL(m)-

invariant algebra homomorphism such that s ◦ t
r
= tr. Thus we have the

GL(m)-map Φo : Qq × A
r
→ Ar given by Φo(ξ, u) = s(u). Clearly, given

ξ ∈ Qq, the map µξ : Ar → Ar, µξ(v) = Φo(ξ, v) is an algebra homomorphism

with µξ ◦ t
r
= tr. So, we have the corresponding (symmetrization) FMm-

natural operator S transforming torsion free classical linear connections ∇ on
m-manifolds M into base preserving fibred maps S(∇) : F 1Y → F 2Y for
FMm-objects Y with bases M .

Lemma 4. Let Φi : Qq×A
r
→ Ar (i = 1, 2) be GL(m)-maps such that for any

ξ ∈ Qq the maps µi
ξ : A

r
→ Ar, µi

ξ(v) = Φi(ξ, v) are algebra homomorphisms

with µi
ξ ◦ t

r
= tr. Then Φ1 = Φ2.

Proof. We have to show that 〈Φ1(ξ, u), w〉 = 〈Φ2(ξ, u), w〉 for any ξ ∈ Qq,

any u ∈ A
r
and any w ∈ Sk

R
m for k = 0, . . . , r. Because of the GL(m)-

invariance of Φ1 and Φ2 we can assume that w = ⊙ke1 ∈ Sk
R

m, where e1 =
(1, 0, . . . , 0) ∈ R

m, k = 0, . . . , r. Using the invariance of Φ1 and Φ2 with respect
to at : R

m → R
m, at(x1, . . . , xm) = (x1, tx2, . . . , txm) for t > 0 we obtain

〈Φi(ξ, u), w〉 = 〈Φi(at.ξ, at.u), w〉 for i = 1, 2 and any t > 0 (as at preserves
w = ⊙ke1). Putting t → ∞ we get 〈Φi(ξ, u), w〉 = 〈Φi(ξo, uo), w〉 for i = 1, 2,

where ξo = limt→∞(at.ξ) ∈ Qq and uo = limt→∞(at.u) ∈ Ar ⊂ A
r
(these

limits exist as ∇i
11;1···1 = 0). But Φ1(ξo, uo) = Φ2(ξo, uo) because µi

ξo(u
o) =

µi
ξ ◦ I(u

o) = µi
ξo ◦ t

r
(uo) = tr(uo) for i = 1, 2 as uo ∈ Ar ⊂ A

r
. That is why,

〈Φ1(ξ, u), w〉 = 〈Φ2(ξ, u), w〉. �

Thus we have the following corollary of Theorem 1 and Lemma 4.

Corollary 1. The symmetrization FMm-natural operator S is the unique

FMm-natural operator A transforming torsion free classical linear connections

∇ on m-manifolds M into base preserving fibred maps A(∇) : J
r
Y → JrY for

FMm-objects Y with bases M .

The above corollary means that there is only one canonical procedure (called
holonomization or symmetrization) to produce holonomic jets from semiholo-
nomic ones by means of torsion free classical linear connections on bases.
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