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THE KERNELS OF THE LINEAR MAPS OF

FINITE GROUP ALGEBRAS

Dan Yan

Abstract. Let G be a finite group, K a split field for G, and L a linear

map from K[G] to K. In our paper, we first give sufficient and necessary
conditions for KerL and KerL ∩ Z(K[G]), respectively, to be Mathieu-

Zhao spaces for some linear maps L. Then we give equivalent conditions
for KerL to be Mathieu-Zhao spaces of K[G] in term of the degrees of

irreducible representations of G over K if G is a finite Abelian group or

G has a normal Sylow p-subgroup H and L are class functions of G/H.
In particular, we classify all Mathieu-Zhao spaces of the finite Abelian

group algebras if K is a split field for G.

1. Introduction

Throughout this paper, we will write K for a field without specific note and
K[G] for the group algebra of G over K. VG is the K-subspace of the group
algebra K[G] consisting of all the elements of K[G] whose coefficient of the
identity element 1G of G is equal to zero. It is easy to see that VG is a subspace
of K[G] with codimension one. Let L be a linear map from K[G] to K and
L|H means restricting L to H, where H is a subgroup of G. We call H a
p′-subgroup of G if p ∤ |H|. Let

τ : K[H] → K

such that τ(
∑

axx) =
∑

ax. Then w(K[H]) := Ker τ , which is called the
augmentation ideal ofK[H]. It’s equal to

∑
hi∈H(hi−1)K[H] for any subgroup

H of G and w(K[H])K[G] is
∑

hi∈H(hi − 1)K[G].

The Mathieu-Zhao space was introduced byW. Zhao in [7], which is a natural
generalization of ideals, motivated by a conjecture of O. Mathieu. The term
Mathieu-Zhao space was suggested and used by A. van den Essen. We recall
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the definitions of Mathieu-Zhao spaces of K[G] and the radical of a subspace
of K[G]. We say that a K-subspace M of K[G] is called a Mathieu-Zhao space
of K[G] if for any a, b ∈ K[G] with am ∈ M for all m ≥ 1, we have bam ∈ M
when m ≫ 0. Let S be a K-subspace of K[G]. The radical of S is the set of
all elements a ∈ K[G] such that am ∈ S when m ≫ 0. We say that a subspace
of K[G] has MZ-property if it is a Mathieu-Zhao space of K[G]. In [1], J. J.
Duistermaat and W. van der Kallen proved the Mathieu conjecture for the case
of tori, which can be re-stated as follows.

Theorem 1.1. Let z = (z1, z2, . . . , zm) be m commutative free variables and
V the subspace of the Laurent polynomial algebra C[z−1, z] consisting of the
Laurent polynomials with no constant term. Then V is a Mathieu-Zhao space
of C[z−1, z].

Let G be the free Abelian group Zm (m ≥ 1). Then the Laurent polynomial
algebra C[z−1, z] can be identified with the group algebra C[G]. Under this
identification, the subspace of V in the theorem is VG. In [9], W. Zhao and R.
Willems proved that VG is a Mathieu-Zhao space of K[G] if G is a finite group
and charK = 0 or charK = p > |G|. For finite Abelian group, they proved
that if K contains a primitive d-th root of unity and charK = p, then VG is a
Mathieu-Zhao space of K[G] if and only if charK = p > d, where |G| = pad,
p ∤ d. In [10], W. Zhao and the author give a sufficient and necessary condition
for VG to be a Mathieu-Zhao space of K[G] if G is a finite group and K is a
split field for G. Since VG is just one subspace of K[G] with codimension one,
we first want to consider all subspaces of K[G] with codimension one. Then we
want to consider all subspaces of K[G]. Hence it is natural to ask the following
question.

Problem 1.2. Let G be a finite group with |G| = n, L = (L1, L2, . . . , Lr) and
Li be a linear map from K[G] to K such that Li(gj) = li,j for all 1 ≤ i ≤ r,
1 ≤ j ≤ n. Suppose that L1, L2, . . . , Lr are linearly independent over K. Then
under what conditions on L and K, KerL forms a Mathieu-Zhao space of the
group algebra K[G]?

It’s easy to see that if r ≥ n, then KerL = 0. If r ≤ n−1, then dimK KerL =
n− r and every codimension r subspace of K[G] is KerL for some linear map
L. Hence KerL are all the codimension r subspaces of K[G].

In our paper, we first prove some properties of KerL and KerL ∩ Z(K[G])
in Section 2. In Section 3, we give sufficient and necessary conditions for KerL
and KerL ∩ Z(K[G]), respectively, to be Mathieu-Zhao spaces for some linear
maps L. Then we classify all Mathieu-Zhao spaces of K[G] if G is a finite
Abelian group and K a split field for G in Section 4. Thus, we solve Problem
1.2 if G is a finite Abelian group. In Section 5, we give equivalent conditions for
KerL to be Mathieu-Zhao spaces of K[G] in term of the degrees of irreducible
representations of G over K if G has a normal Sylow p-subgroup H and L
are class functions of G/H or L1, . . . , Lr−1 are class functions of G/H and
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Lr(g̃jh2) = Lr(g̃jh3) = · · · = Lr(g̃jht̃) for all 1 ≤ j ≤ d, where G = ∪d
j=1g̃jH,

H = {1H , h2, . . . , ht̃}.

2. Some properties of KerL and KerL ∩ Z(K[G])

Proposition 2.1. Let L = (L1, L2, . . . , Lr) and Li be a linear map from K[G]
to K such that Li(gj) = li,j for all 1 ≤ i ≤ r, 1 ≤ j ≤ n. K, G be as in Problem
1.2 and g1 be the identity 1G of G. Then we have the following statements:

(1) If all the li,j are equal for all 1 ≤ i ≤ r, 1 ≤ j ≤ n, then KerL is an
ideal of K[G].

(2) If KerL is a Mathieu-Zhao space of K[G], then there exists i0 ∈ {1, 2,
. . . , r} such that li0,1 ̸= 0.

Proof. (1) Let l := li,j for all 1 ≤ i ≤ r, 1 ≤ j ≤ n. Then KerL = {
∑n

j=1 cjgj ∈
K[G] | l ·

∑n
j=1 cj = 0}. Since l ̸= 0, we have that KerL = {

∑n
j=1 cjgj ∈ K[G] |∑n

j=1 cj = 0}. It is easy to check that KerL is an ideal of K[G].

(2) If l1,1 = · · · = lr,1 = 0, then 1G ∈ KerL. If KerL is a Mathieu-Zhao
space of K[G], then KerL = K[G]. That is, L = 0, which is a contradiction.
Then the conclusion follows. □

Remark 2.2. We can see from Proposition 2.1 that we can assume li0,1 ̸= 0 for
some i0 ∈ {1, 2, . . . , r} in the following arguments. If r = 1 and l1,2 = l1,3 =
· · · = l1,n = 0, l1,1 ̸= 0, then KerL = VG, which is discussed in [9] and [10].

Proposition 2.3. Let R be any commutative ring and G any group. Suppose
that L = (L1, L2, . . . , Lr) is a linear map from R[G] to R. If KerL is a Mathieu-
Zhao space of R[G], then Ker(L|H) is a Mathieu-Zhao space of R[H], where H
is any subgroup of G.

Proof. Assume otherwise. Then there exist u, v1, v2 ∈ R[H] such that um ∈
Ker(L|H) for all m ≥ 1 and v1u

mv2 /∈ Ker(L|H) for infinitely many m ≥ 1.
Since R[H] ⊆ R[G], we have u, v1, v2 ∈ R[G] and um ∈ KerL for all m ≥ 1
and v1u

mv2 /∈ KerL for infinitely many m ≥ 1. Otherwise, v1u
mv2 ∈ KerL ∩

R[H] = Ker(L|H), which is a contradiction. Hence KerL is not a Mathieu-Zhao
space of R[G], which is a contradiction. Then the conclusion follows. □

Corollary 2.4. Let L, G be as in Problem 1.2 and K a field of characteristic p,
H a normal subgroup of G. If H is a p′-subgroup and KerL is a Mathieu-Zhao
space of K[G], then Ker(L|G/H) is a Mathieu-Zhao space of K[G/H].

Proof. Let φ be the natural surjective homomorphism from K[G] to K[G/H]

and EH = 1
|H|

∑|H|
j=1 hj . Then (1−EH)K[G] = Kerφ and EHK[G] ∼= K[G/H].

Thus, we have K[G] ∼= (1 − EH)K[G] ⊕K[G/H]. Therefore, K[G/H] can be
seen as a subalgebra of K[G]. It follows from the arguments of Proposition 2.3
that Ker(L|G/H) is a Mathieu-Zhao space of K[G/H]. □
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Proposition 2.5. Let K and L be as in Problem 1.2 and G a finite group
with G = {g1, g2, . . . , gn}, g1 = 1G. If there exists ĩ ∈ {1, 2, . . . , r} such
that detMLĩ

̸= 0, then KerL is a Mathieu-Zhao space of K[G] if and only
if all elements of r(KerL) are nilpotent, where MLĩ

= (l̃i,j1,2)n×n and l̃i,j1,2 =

Lĩ(g
−1
j1

gj2) for 1 ≤ j1, j2 ≤ n.

Proof. (⇐) It follows from the definition of Mathieu-Zhao spaces.
(⇒) Let u ∈ r(KerL). Replacing u by a positive power of u, if necessary,

we may assume that um ∈ KerL for all m ≥ 1. Since G is finite, by definition
of Mathieu-Zhao space, there exists N ≥ 1 such that g−1

j1
um ∈ KerL for all

gj1 ∈ G and m ≥ N . Let uN =
∑n

j2=1 dj2gj2 . Then we have g−1
j1

uN ∈ KerL
for all 1 ≤ j1 ≤ n. That is,

(2.1) MLi
·

 d1

d2

...
dn

 = 0

for all 1 ≤ i ≤ r. Since there exists ĩ ∈ {1, 2, . . . , r} such that detMLĩ
̸= 0, we

have that d1 = · · · = dn = 0. That is, uN = 0. Thus, u is nilpotent. □

Remark 2.6. If li,1 = 1 and li,2 = · · · = li,n = 0 for some i ∈ {1, 2, . . . , r}, then
MLi

is the identity matrix. Thus, we have detMLi
= 1 in this case. It is easy

to see that detMLi
is the group determinant of G up to a sign for 1 ≤ i ≤ r.

Corollary 2.7. Let K and L be as in Problem 1.2 and G a finite group with
G = {g1, g2, . . . , gn}, g1 = 1G. If there exists ĩ ∈ {1, 2, . . . , r} such that
detMLĩ

̸= 0, then KerL∩Z(K[G]) is a Mathieu-Zhao space of K[G] if and only
if all elements of r(KerL ∩ Z(K[G])) are nilpotent, where MLĩ

= (l̃i,j1,2)n×n

and l̃i,j1,2 = Lĩ(g
−1
j1

gj2) for 1 ≤ j1, j2 ≤ n.

Proof. The conclusion follows from the arguments of Proposition 2.5 by replac-
ing KerL with KerL ∩ Z(K[G]). □

Proposition 2.8. Let K, L and G be as in Problem 1.2. If there exists ĩ ∈
{1, 2, . . . , r} such that detMLĩ

̸= 0, then KerL is a Mathieu-Zhao space of
K[G] if and only if KerL contains no nonzero idempotent of K[G].

Proof. (⇒) Let e ∈ KerL be an idempotent. Then em = e ∈ KerL for all
integers m ≥ 1, whence e ∈ r(KerL). It follows from Proposition 2.5 that e is
nilpotent. Thus, we have e = eN = 0 for some N ∈ N. Thus, the conclusion
follows.

(⇐) Since G is finite, we have that K[G] is algebraic over K. In particular,
the radical r(KerL) is algebraic over K. It follows from Theorem 4.2 in [8]
that KerL is a Mathieu-Zhao space of K[G]. □

Corollary 2.9. Let K, L and G be as in Problem 1.2. If there exists ĩ ∈
{1, 2, . . . , r} such that detMLĩ

̸= 0, then KerL ∩ Z(K[G]) is a Mathieu-Zhao
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space of K[G] if and only if KerL ∩ Z(K[G]) contains no nonzero idempotent
of K[G].

Proof. The conclusion follows from the arguments of Proposition 2.8 by replac-
ing KerL with KerL ∩ Z(K[G]). □

Remark 2.10. If KerL (KerL ∩ Z(K[G])) contains no nonzero idempotent of
K[G], then KerL (KerL∩Z(K[G])) is a Mathieu-Zhao space of K[G] without
the condition that detMLĩ

̸= 0 for some ĩ ∈ {1, 2, . . . , r} in Proposition 2.8
(Corollary 2.9).

Corollary 2.11. Let K be a field of characteristic p and G a p-group. Then
KerL is a Mathieu-Zhao space of K[G].

Proof. Note that K[G] is a local K-algebra. Hence K[G] does not contain
nontrivial idempotent. Thus, KerL contains no nonzero idempotent of K[G].
Then the conclusion follows from Proposition 2.8 and Remark 2.10. □

Remark 2.12. Corollary 2.11 can also be deduced from Theorem 7.6 in [8].

Lemma 2.13. Let L and G be as in Problem 1.2. Then KerL = {β ∈
K[G] | Trβαi = 0 for all 1 ≤ i ≤ r}, where αi =

∑n
j=1 li,jg

−1
j for all 1 ≤ i ≤ r.

Proof. Let β =
∑n

j=1 cjgj . Then Li(β) =
∑n

j=1 cj li,j = Trβαi for all 1 ≤ i ≤
r. Hence the conclusion follows. □

Theorem 2.14. Let L and G be as in Problem 1.2 and K a field of charac-
teristic zero or a field of characteristic p and p ∤ |G|. If K is a split field for
G, then

KerL ∼= {(A1, . . . , As) ∈ A |
s∑

j=1

nj Tr(Ci,jAj) = 0 for all 1 ≤ i ≤ r},

where A = Mn1(K) × · · · × Mns(K) is the product of matrices and Ci,j =
ρj(αi) ∈ Mnj (K), αi be as in Lemma 2.13, ρj is an irreducible representation
of G, nj = ρj(1) for 1 ≤ j ≤ s, 1 ≤ i ≤ r and s is the number of distinct (up
to isomorphism) irreducible representations of G.

Proof. Since charK = 0 or charK = p and p ∤ |G|, we have that K[G] is
semi-simple. Since K is a split field for G, we have that

K[G] ∼= Mn1(K)×Mn2(K)× · · · ×Mns(K),

where Mnj (K) is the ring of nj × nj matrices over K for 1 ≤ j ≤ s. Let ρ̃ be
the regular representation of K[G]. Then Tr(β) = 0 if and only if Tr(ρ̃(β)) = 0
for all β ∈ K[G]. Let ρ = (ρ1, ρ2, . . . , ρs). Then ρ is a ring isomorphism from
K[G] to A. Let β be any element in K[G]. Then

ρ(αiβ) = (ρ1(αiβ), ρ2(αiβ), . . . , ρs(αiβ)) = (ρ1(αi)ρ1(β), . . . , ρs(αi)ρs(β)).
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Suppose that

ρ(αi) = (ρ1(αi), . . . , ρs(αi)) =


Ci,1 0 · · · 0
0 Ci,2 · · · 0
...

...
. . .

...
0 0 · · · Ci,s

 ∈ A

and

ρ(β) = (ρ1(β), . . . , ρs(β)) =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · As

 ∈ A

for all 1 ≤ i ≤ r. Then we have that

ρ(αiβ) =


Ci,1A1 0 · · · 0

0 Ci,2A2 · · · 0
...

...
. . .

...
0 0 · · · Ci,sAs

 ∈ A.

Thus, we have the following commutative diagram:

K[G]
∼=−−−−→ Mn1(K)×Mn2(K)× · · · ×Mns(K)

ρ̃(αiβ)

y ϕ(ρ(αiβ))

y
K[G]

∼=−−−−→


Mn1

(K) 0 · · · 0
0 Mn2

(K) · · · 0
...

...
. . .

...
0 0 · · · Mns

(K)

 ,

where ϕ is the natural isomorphism between the two algebras. Thus, we have
that Tr(ρ̃(αiβ)) = 0 if and only if Tr(ϕ(ρ(αiβ))) = 0. Since Tr(ϕ(ρ(αiβ))) =
n1 Tr(Ci,1A1) + n2 Tr(Ci,2A2) + · · ·+ ns Tr(Ci,sAs), we have that Tr(αiβ) = 0
if and only if n1 Tr(Ci,1A1) + n2 Tr(Ci,2A2) + · · · + ns Tr(Ci,sAs) = 0 for all
1 ≤ i ≤ r. Thus, we have that KerL ∼= V , where

V = {(A1, A2, . . . , As) ∈ A |
s∑

j=1

nj TrCi,jAj = 0 for all 1 ≤ i ≤ r}.
□

Corollary 2.15. Let L and G be as in Problem 1.2 and K a field of char-
acteristic zero or a field of characteristic p and p ∤ |G|. If K is a split field
for G and r = 1, then KerL is a Mathieu-Zhao space of K[G] if and only if

n1λ1d1 + n2λ2d2 + · · · + ntλtdt ̸= 0 for all non-zero vectors d̃ = (d1, . . . , dt),
dj ∈ {0, 1, . . . , nj} for 1 ≤ j ≤ t, where njλj = Tr ρj(α1), α1 is as in Lemma
2.13, ρj is an irreducible representation of G for 1 ≤ j ≤ s and s is the
number of distinct (up to isomorphism) irreducible representations of G and
t ∈ {1, 2, . . . , s}.
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Proof. It follows from Theorem 2.14 that KerL ∼= V , where V = {(A1, . . . , As)
∈ A |

∑s
j=1 nj Tr(C1,jAj) = 0} and C1,j = ρj(α1) ∈ Mnj

(K) for 1 ≤ j ≤ s.
Let ρ be as in Theorem 2.14. Since α1 ̸= 0 and ρ is an isomorphism, we
have that ρ(α1) ̸= 0. We can assume that C1,1, . . . , C1,t are not equal to zero
and C1,t+1 = · · · = C1,s = 0 for some t ∈ {1, 2, . . . , s} by reordering the ρj for
1 ≤ j ≤ s. It follows from Theorem 5.8.1 in [2] or Theorem 4.4 in [4] that V is a
Mathieu-Zhao space of A if and only if C1,j = λjInj and n1λ1d1+· · ·+ntλtdt ̸=
0 for all nonzero vectors d̃ = (d1, . . . , dt) and dj ∈ {0, 1, . . . , nj} for 1 ≤ j ≤ t.
Then the conclusion follows. □

Proposition 2.16. Let L and G be as in Problem 1.2 and K a field of char-
acteristic zero or a field of characteristic p and p ∤ |G|. If K is a split field for
G and r = 1, then the following two statements are equivalent:

(1) KerL is a Mathieu-Zhao space of K[G].
(2) There exist µ1, . . . , µt ∈ K such that L1 = µ1χ1 + µ2χ2 + · · · + µtχt

and µ1d1 + · · · + µtdt ̸= 0 for all nonzero vectors d̃ = (d1, d2, . . . , dt), dj ∈
{0, 1, . . . , nj} for 1 ≤ j ≤ t, where χ1, χ2, . . . , χs are the non-isomorphic irre-
ducible characters of G and µj = n−1njλj, nj = χj(1), njλj = Tr ρj(α1), α1

is as in Lemma 2.13 and ρj is an irreducible representation of G with character
χj for 1 ≤ j ≤ s, s is the number of distinct (up to isomorphism) irreducible
representations of G and t ∈ {1, 2, . . . , s}. In particular, L1 is a class function
of G.

Proof. (1) ⇒ (2) Since L1(β) = Tr(α1β) for any β ∈ K[G], where α1 is as in
Lemma 2.13, we have that

nTr(α1β) = Tr ρ̃(α1β) = Trϕ(ρ(α1β))

by following the arguments of Theorem 2.14, where ρ̃ is as in Theorem 2.14.
Since KerL is a Mathieu-Zhao space of K[G], it follows from Corollary 2.15
that C1,j = λjInj

for λj ∈ K and for all 1 ≤ j ≤ s. We can assume that
λ1 · · ·λt ̸= 0 and λt+1 = · · · = λs = 0 for some t ∈ {1, 2, . . . , s} by reordering
χ1, χ2, . . . , χs.

Thus, it follows from Lemma 2.13 that

L1(β) = Tr(α1β) = n−1(n1λ1 TrA1 + n2λ2 TrA2 + · · ·+ ntλt TrAt).

Since TrAj = χj(β) for all 1 ≤ j ≤ s, we have that

L1 = n−1(n1λ1χ1 + n2λ2χ2 + · · ·+ ntλtχt).

It follows from Corollary 2.15 that n1λ1d1 + · · · + ntλtdt ̸= 0 for all nonzero
vectors d̃ = (d1, d2, . . . , dt), dj ∈ {0, 1, . . . , nj} for 1 ≤ j ≤ t. Let µj = n−1njλj

for all 1 ≤ j ≤ s. Then the conclusion follows.
(2) ⇒ (1) Since KerL = {β ∈ K[G] |L1(β) = 0} = {β ∈ K[G] |µ1χ1(β) +

· · ·+ µtχt(β) = 0} and there exists Aj ∈ Mnj
(K) such that TrAj = χj(β) for
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all 1 ≤ j ≤ t, we have that

KerL = {(A1, . . . , At) ∈ Mn1
(K)× · · · ×Mnt

(K) |
t∑

j=1

µj TrAj = 0}.

Then the conclusion follows from Theorem 5.8.1 in [2] or Theorem 4.4 in [4]. □

Remark 2.17. To prove that KerL is a Mathieu-Zhao space of K[G] for r = 1

if n1λ1d1+n2λ2d2+ · · ·+ntλtdt ̸= 0 for all nonzero vectors d̃ = (d1, d2, . . . , dt)
and dj ∈ {0, 1, . . . , nj} for 1 ≤ j ≤ t, we don’t need the condition that K is
a split field for G in Corollary 2.15 by following the arguments Theorem 5.8.1
in [2], because an idempotent matrix can be conjugated to a diagonal matrix
with only 0 and 1 on the diagonal over division rings.

If L = µjχj for some j ∈ {1, 2, . . . , t}, µj ∈ K∗, then it follows from the
arguments of Proposition 2.16 that the condition n1λ1d1 + n2λ2d2 + · · · +
ntλtdt ̸= 0 in Theorem 2.14 is equivalent to njdj ̸= 0 for all 1 ≤ dj ≤ nj , which
is clearly true if charK = 0. If charK = p, then the condition is equivalent to
p > nj . To see this, we can assume that p | njdj for some dj ∈ {1, 2, . . . , nj},
then p | nj or p | dj , which contradicts with p > nj . Thus, if p > nj , then
njdj ̸= 0 mod p for all 1 ≤ dj ≤ nj . Conversely, suppose that p ≤ nj . Then let
dj = p ∈ {1, 2, . . . , nj}, we have that njp = 0 mod p, which is a contradiction.
Thus, if njdj ̸= 0 mod p for all 1 ≤ dj ≤ nj , then p > nj . Therefore, the
conclusion is the same as Theorem 5.1 in [8] in this situation.

3. The MZ-property of KerL and KerL ∩ Z(K[G])

Condition 1: Let L and G be as in Problem 1.2 andK a field of characteristic
p, H a normal p-subgroup of G, G = ∪k

j=1g̃jH, H = {h1, h2, . . . , ht̃} for t̃ = pr̃

for some r̃ ∈ N and Li(g̃jh2) = · · · = Li(g̃jht̃) for all 1 ≤ i ≤ r, 1 ≤ j ≤ k.

Proposition 3.1. Let L, G, K, H be as in Condition 1 and Li(g̃jh1) =
Li(g̃jh2) for 1 ≤ i ≤ r, 1 ≤ j ≤ k. Then KerL is a Mathieu-Zhao space of
K[G] if and only if Ker(L|G/H) is a Mathieu-Zhao space of K[G/H].

Proof. Let φ be the natural surjective homomorphism from K[G] to K[G/H].
Since Li(g̃jh1) = Li(g̃jh2) = · · · = Li(g̃jht̃) for all 1 ≤ i ≤ r, 1 ≤ j ≤ k, there

exists a linear map L̃ from K[G/H] to K such that L = φ−1(L̃), where L̃ =

L|G/H . Since φ is surjective and Kerφ = w(K[H])K[G] =
∑t̃

l=1(hl − 1)K[G],
we have Kerφ ⊆ KerL. Then it follows from Theorem 5.2.19 in [2] that KerL
is a Mathieu-Zhao space of K[G] if and only if Ker(L|G/H) is a Mathieu-Zhao
space of K[G/H]. □

Corollary 3.2. Let L, G, K, H be as in Condition 1, |G| = pad, p ∤ d, r̃ = a,
k = d and H a normal Sylow p-subgroup of G. If r = 1, then the following two
statements are equivalent:

(1) KerL is a Mathieu-Zhao space of K[G].
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(2) There exist µ1, . . . , µt ∈ K such that L1 = µ1χ1 + µ2χ2 + · · · + µtχt

and µ1d1 + · · · + µtdt ̸= 0 for all nonzero vectors d̃ = (d1, d2, . . . , dt), dj ∈
{0, 1, . . . , nj} for 1 ≤ j ≤ t, where χ1, χ2, . . . , χs are the distinct (up to iso-
morphism) irreducible characters of K[G] and µj = d−1njλj, nj = χj(1),

njλj = Tr ρj(α1), α1 =
∑d

j=1 l1,j g̃
−1
j and ρj is an irreducible representation of

K[G] with character χj for 1 ≤ j ≤ t and t ∈ {1, 2, . . . , s}.

Proof. It follows from Proposition 3.1 that KerL is a Mathieu-Zhao space of
K[G] if and only if Ker(L|G/H) is a Mathieu-Zhao space of K[G/H]. Since
p ∤ |G/H|, the conclusion follows from Proposition 2.16. □

Remark 3.3. Let the notations be the same as Corollary 3.2. Then J(K[G]) =
w(K[H])K[G] ⊆ KerL if and only if Li(g̃jh1) = Li(g̃jh2) = · · · = Li(g̃jht̃) for
all 1 ≤ i ≤ r, 1 ≤ j ≤ d.

Proposition 3.4. Let L, G, K, H be as in Condition 1 and h1 = 1H . Then
we have the following statements:

(1) If there exists ĩ ∈ {1, 2, . . . , r} such that detMLĩ|G/H
̸= 0 and Ker(L|G/H)

is a Mathieu-Zhao space of K[G/H], then KerL is a Mathieu-Zhao space of

K[G], where MLĩ|G/H
= (l̃̃i,j1,2)k×k and l̃̃i,j1,2 = Lĩ(g̃

−1
j1

g̃j2) for 1 ≤ j1, j2 ≤ k.

(2) If there exists î ∈ {1, 2, . . . , r} such that detMLî
̸= 0 and KerL is

a Mathieu-Zhao space of K[G], then Ker(L|G/H) is a Mathieu-Zhao space of

K[G/H], where MLî
= (l̂i,j1,2)n×n and l̂i,j1,2 = Lî(g

−1
j1

gj2) for 1 ≤ j1, j2 ≤ n.

Proof. Let φ be the natural surjective homomorphism from K[G] to K[G/H].
(1) Let E be an idempotent of KerL. Then

E = g̃1 · a1(h) + g̃2 · a2(h) + · · ·+ g̃k · ak(h),
where ai(h) ∈ K[H], h = (h1, h2, . . . , ht̃), g̃j /∈ H for 2 ≤ j ≤ k and g̃1 = 1G/H .
Let b ∈ H and b ̸= 1H . Then b is a p-element. Thus, it follows from Lemma
2.7 in [6] that the sum of coefficients in E of the G-conjugacy class of b is
equal to zero. Then φ(E) = g̃1 · a1(1) + g̃2 · a2(1) + · · · + g̃k · ak(1). Let
aj(h) = aj1h1+aj2h2+· · ·+ajt̃ht̃ for 1 ≤ j ≤ k. Then we have that aj(1) = aj1
and Li(g̃j · aj(h)) = aj1Li(g̃j) for all 1 ≤ i ≤ r, 1 ≤ j ≤ k. Thus, we
have that Li(E) = a11Li(1) + a21Li(g̃2) + · · · + ak1Li(g̃k) = Li(φ(E)) for all
1 ≤ i ≤ r. Therefore, we have that E ∈ KerL if and only if φ(E) ∈ Ker(L|G/H).

That is, Ē = φ(E) is an idempotent of Ker(L|G/H). Since Ker(L|G/H) is a
Mathieu-Zhao space of K[G/H], it follows from Proposition 2.8 that φ(E) = 0
in K[G/H]. That is, E ∈ Kerφ = w(K[H])K[G]. It follows from Lemma
2.8 in [6] that E is nilpotent. Thus, we have E = 0. Hence it follows from
Proposition 2.8 and Remark 2.10 that KerL is a Mathieu-Zhao space of K[G].

(2) Since Kerφ = w(K[H])K[G], it follows from Lemma 2.8 in [6] that
w(K[H])K[G] is a nilpotent ideal and K[G/H] ∼= K[G]/Kerφ. Let ū be any
idempotent of Ker(L|G/H). Then there exists a u ∈ K[G] such that ū = φ(u).
It follows from Lemma 3.7(i) of Chapter 2 in [6] that there exists an idempotent
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e = ub̃u such that φ(e) = ū for some b̃ ∈ K[G]. We have that e ∈ KerL by
following the arguments of Proposition 3.4(1). Since KerL is a Mathieu-Zhao
space of K[G], it follows from Proposition 2.8 that e = 0. Thus, we have
ū = φ(e) = 0. Hence it follows from Proposition 2.8 and Remark 2.10 that
Ker(L|G/H) is a Mathieu-Zhao space of K[G/H]. □

Proposition 3.5. Let L, G, K, H be as in Condition 1, |G| = pad, p ∤ d,
r̃ = a, k = d and H a normal Sylow p-subgroup of G, h1 = 1H and K is a
split field for G/H. If there exist ĩ, î ∈ {1, 2, . . . , r} such that detMLĩ|G/H

̸= 0

and detMLî
̸= 0 and r = 1, then KerL is a Mathieu-Zhao space of K[G]

if and only if n1λ1d1 + n2λ2d2 + · · · + ntλtdt ̸= 0 for all nonzero vectors d̃ =
(d1, d2, . . . , dt) and dj ∈ {0, 1, . . . , nj} for 1 ≤ j ≤ t, where njλj = Tr ρj(α1) for

1 ≤ j ≤ s and α1 =
∑d

j=1 l1,j g̃
−1
j , ρ1, . . . , ρs are distinct (up to isomorphism)

irreducible representations of K[G] and t ∈ {1, 2, . . . , s}, MLĩ|G/H
= (l̃̃i,j1,2)d×d

and l̃̃i,j1,2 = Lĩ(g̃
−1
j1

g̃j2) for 1 ≤ j1, j2 ≤ d, MLî
= (l̂i,j1,2)n×n and l̂i,j1,2 =

Lî(g̃
−1
j1

g̃j2) for 1 ≤ j1, j2 ≤ n.

Proof. It follows from Proposition 3.4 that KerL is a Mathieu-Zhao space of
K[G] if and only if Ker(L|G/H) is a Mathieu-Zhao space of K[G/H]. Since
p ∤ |G/H|, the conclusion follows from Corollary 2.15. □

Theorem 3.6. Let L and G be as in Problem 1.2 and K a field of characteristic
zero or a field of characteristic p, p ∤ |G|. Suppose that G = {g1, . . . , gn}
with g1 = 1G and χ1, . . . , χs are the distinct (up to isomorphism) irreducible
characters of K[G]. Then we have the following statements:

(1) If there exists qi1,...,il∈{1, 2, . . . , r} such that
∑n

i=1(
∑l

j=1 χij (1)χij (g
−1
i ))·

lqi1,...,il
,i ̸= 0 for all 1 ≤ i1 < i2 < · · · < il ≤ s, l ∈ {1, 2, . . . , s}, then

KerL ∩ Z(K[G]) is a Mathieu-Zhao space of K[G].
(2) If there exists ĩ ∈ {1, 2, . . . , r} such that detMLĩ

̸= 0 and KerL∩Z(K[G])
is a Mathieu-Zhao space of K[G], then there exists qi1,...,il ∈ {1, 2, . . . , r} such

that
∑n

i=1(
∑l

j=1 χij (1)χij (g
−1
i ))lqi1,...,il

,i ̸= 0 for all 1 ≤ i1 < i2 < · · · < il ≤ s.

Proof. (1) Let ek̃ = 1
n

∑
g∈G χk̃(1)χk̃(g

−1)g for 1 ≤ k̃ ≤ s. Then it follows

from Theorem 2.12 in [3] that e1, e2, . . . , es are the primitive orthogonal idem-
potents of Z(K[G]). It follows from Theorem 3.11 in [5] that every idem-

potent of Z(K[G]) is some sum of e1, e2, . . . , es. Since
∑n

i=1(
∑l

j=1 χij (1) ·
χij (g

−1
i ))lqi1,...,il

,i ̸= 0, we have that Lqi1,...,il
(ei1 + ei2 + · · · + eil) ̸= 0 for all

1 ≤ i1 < i2 < · · · < il ≤ s, l ∈ {1, 2, . . . , s}. That is, any nonzero idempotent
of Z(K[G]) is not in KerL. Thus, KerL ∩ Z(K[G]) has no nonzero idempo-
tent. It follows from Corollary 2.9 and Remark 2.10 that KerL∩Z(K[G]) is a
Mathieu-Zhao space of K[G].

(2) It follows from Corollary 2.9 that KerL∩Z(K[G]) has no nonzero idem-
potent. Hence there exists qi1,...,il ∈ {1, 2, . . . , r} such that Lqi1,...,il

(ei1 + ei2 +
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· · · + eil) ̸= 0 for all 1 ≤ i1 < i2 < · · · < il ≤ s, l ∈ {1, 2, . . . , s}. That is,∑n
i=1(

∑l
j=1 χij (1)χij (g

−1
i )) · lqi1,...,il

,i ̸= 0 for all 1 ≤ i1 < i2 < · · · < il ≤ s,

l ∈ {1, 2, . . . , s}. □

Proposition 3.7. Let L, G, K, H be as in Condition 1 and h1 = 1H . If there
exists ĩ ∈ {1, 2, . . . , r} such that detMLĩ|G/H

̸= 0 and Ker(L|G/H)∩Z(K[G/H])

is a Mathieu-Zhao space of K[G/H], then KerL∩Z(K[G]) is a Mathieu-Zhao

space of K[G], where MLĩ|G/H
= (l̃̃i,j1,2)k×k and l̃̃i,j1,2 = Lĩ(g̃

−1
j1

g̃j2) for 1 ≤
j1, j2 ≤ k.

Proof. Let φ be the natural surjective homomorphism from K[G] to K[G/H].
Then it’s easy to check that if E ∈ Z(K[G]), then φ(E) ∈ Z(K[G/H]). Thus,
the conclusion follows by following the arguments of Proposition 3.4(1). □

Corollary 3.8. Let L, G, K, H be as in Condition 1, |G| = pad, p ∤ d, r̃ = a,
k = d and H a normal Sylow p-subgroup of G and h1 = 1H . If there exists ĩ ∈
{1, 2, . . . , r} such that detMLĩ|G/H

̸= 0 and there exists qi1,...,il ∈ {1, 2, . . . , r}
such that

∑d
î=1(

∑l
ĵ=1 χiĵ

(1)χiĵ
(g̃−1

î
)) · lqi1,...,il

,̂i ̸= 0 for all 1 ≤ i1 < i2 < · · · <
il ≤ s, l ∈ {1, 2, . . . , s}, then KerL∩Z(K[G]) is a Mathieu-Zhao space of K[G],
where χ1, . . . , χs are the distinct (up to isomorphism) irreducible characters of

K[G] and G/H = {g̃1, . . . , g̃d}, MLĩ|G/H
= (l̃̃i,j1,2)d×d and l̃̃i,j1,2 = Lĩ(g̃

−1
j1

g̃j2)

for 1 ≤ j1, j2 ≤ d.

Proof. The conclusion follows from Theorem 3.6(1) and Proposition 3.7. □

4. Mathieu-Zhao spaces of finite Abelian group algebras

Proposition 4.1. Let B = K × · · · ×K be a K-algebra and

V = {(a1, a2, . . . , an) ∈ B |
n∑

j=1

γi,jaj = 0 for all 1 ≤ i ≤ r},

where γi,j ∈ K for all 1 ≤ i ≤ r, 1 ≤ j ≤ n. If at least one of γi,j is nonzero
for all 1 ≤ i ≤ r, 1 ≤ j ≤ n, then V is a Mathieu-Zhao space of B if and only
if γi,1d1 + γi,2d2 + · · · + γi,tidti ̸= 0 for some i ∈ {1, 2, . . . , r} for all nonzero

vectors d̃ = (d1, d2, . . . , dti) and dji ∈ {0, 1} for 1 ≤ ji ≤ ti, ti ∈ {1, . . . , n}.

Proof. We can assume that γi,j ̸= 0 for all 1 ≤ j ≤ t for some i ∈ {1, 2, . . . , r}
and γi,j = 0 for all 1 ≤ i ≤ r and t+1 ≤ j ≤ n by reordering γi,j for 1 ≤ i ≤ r,
1 ≤ j ≤ n and then we have

t columns︷ ︸︸ ︷
0× · · · × 0×K × · · · ×K ⊆ V

and

0× · · · ×K × 0× · · · ×
n−t columns︷ ︸︸ ︷
0× · · · × 0 ⊈ V,

where t = max{t1, t2, . . . , tr}.
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(⇒) Suppose that γi,1d1 + γi,2d2 + · · ·+ γi,tidti = 0 for some nonzero vector

d̃ = (d1, d2, . . . , dti), dji = 0 or 1 for 1 ≤ ji ≤ ti for all 1 ≤ i ≤ r, then
e = (d1, . . . , dt, 0, . . . , 0) is an idempotent of V . Since V is a Mathieu-Zhao
space of B, we have that Be = Kd1 × · · · ×Kdt × 0× · · · × 0 ⊆ V , which is a
contradiction. Then the conclusion follows.

(⇐) Let I =

t columns︷ ︸︸ ︷
0× · · · × 0×K×· · ·×K. Then I is an ideal of B. We claim that

V/I contains no nonzero idempotent. Suppose that e is a nonzero idempotent
of V/I. Then we have e = (e1, e2, . . . , et), where ej = 0 or 1 for 1 ≤ j ≤ t. Let

d̃ = (d1, . . . , dt) = e ̸= (0, . . . , 0). Then γi,1d1 + γi,2d2 + · · · + γi,tidti = 0 for
all 1 ≤ i ≤ r, which is a contradiction. It follows from Theorem 4.2 in [8] that
V/I is a Mathieu-Zhao space of B/I. Then it follows from Proposition 2.7 in
[8] that V is a Mathieu-Zhao space of B. □

Remark 4.2. In Proposition 4.1, if γi,j = 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ n, then
V = B. Clearly, V is a Mathieu-Zhao space of B.

Corollary 4.3. Let L and G be as in Problem 1.2 and K a field of charac-
teristic zero or a field of characteristic p and p ∤ |G|. If K is a split field for
G and G is Abelian, then KerL is a Mathieu-Zhao space of K[G] if and only
if γi,1d1 + γi,2d2 + · · · + γi,tidti ̸= 0 for some i ∈ {1, 2, . . . , r} for all nonzero

vectors d̃ = (d1, d2, . . . , dti) and dji ∈ {0, 1} for 1 ≤ ji ≤ ti, ti ∈ {1, . . . , n},
where γi,j = ρj(αi) for all 1 ≤ i ≤ r, 1 ≤ j ≤ n and ρj is an irreducible
representation of G for 1 ≤ j ≤ n and αi be as in Lemma 2.13 for 1 ≤ i ≤ r.

Proof. Since G is Abelian, we have that all the irreducible representations of G
are of degree one. It follows from Theorem 2.14 that KerL ∼= {(a1, a2, . . . , an) ∈
A |

∑n
j=1 γi,jaj = 0 for all 1 ≤ i ≤ r}, where A is n times product of K,

γi,j = ρj(αi) = Tr ρj(αi) ∈ K for all 1 ≤ i ≤ r, 1 ≤ j ≤ n. Since L ̸= 0, we
have that at least one of γi,j is nonzero for 1 ≤ i ≤ r, 1 ≤ j ≤ n. Then the
conclusion follows from Proposition 4.1. □

Lemma 4.4. Let R be an integral domain of characteristic p and G a finite
Abelian group with |G| = pad, p ∤ d. Then every idempotent of R[G] is also

an idempotent of R[G̃], where G = H × G̃ and |H| = pa. In particular, the

idempotent elements of R[G] are the same as the idempotent elements of R[G̃].

Proof. Since G is a finite Abelian group, we have that G = H× G̃ and |G̃| = d.
Let e be an idempotent of R[G]. Then e can be written as

e =
∑
h∈H

αhh

with αh ∈ R[G̃] for each h ∈ H. Since |H| = pa, we have hqm = 1 for any
m ≥ 1, h ∈ H, where q = pa. Thus, we have

e = eq
m

=
∑
h∈H

αqm

h ∈ R[G̃].
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Then the conclusion follows. □

Theorem 4.5. Let L and G be as in Problem 1.2 and K a field of characteristic
p. If K is a split field for G and G is Abelian with |G| = pad, p ∤ d, then the
following statements are equivalent:

(1) KerL is a Mathieu-Zhao space of K[G].
(2) γi,1d1+γi,2d2+ · · ·+γi,tidti ̸= 0 for some i ∈ {1, 2, . . . , r} for all nonzero

vectors d̃ = (d1, d2, . . . , dti) and dji ∈ {0, 1} for 1 ≤ ji ≤ ti, ti ∈ {1, . . . , d},
where γi,j = ρj(αi) = Tr ρj(αi) for 1 ≤ i ≤ r, 1 ≤ j ≤ d and ρj is an irreducible
representation of G/H for 1 ≤ j ≤ d, H is a Sylow p-subgroup of G and αi

is as in Lemma 2.13 by replacing G with G/H for 1 ≤ i ≤ r; li,1, li,2, . . . , li,n
satisfy the following equations:

(4.1)



χj(g̃
−1
1 )li,1 + χj(g̃

−1
2 )li,pa+1 + · · ·+ χj(g̃

−1
d )li,(d−1)pa+1 = 0,

χj(g̃
−1
1 )li,2 + χj(g̃

−1
2 )li,pa+2 + · · ·+ χj(g̃

−1
d )li,(d−1)pa+2 = 0,

...

χj(g̃
−1
1 )li,pa + χj(g̃

−1
2 )li,2pa + · · ·+ χj(g̃

−1
d )li,dpa = 0

for all 1 ≤ i ≤ r and t + 1 ≤ j ≤ d, where χj is the irreducible character
according to ρj for t + 1 ≤ j ≤ d and G = ∪d

k=1g̃kH with g̃1 = 1G/H and
H = {h1, h2, . . . , hpa} with h1 = 1H , Li(hk) = li,k and Li(g̃khq) = li,(k−1)pa+q

for all 1 ≤ i ≤ r, 1 ≤ k ≤ d, 1 ≤ q ≤ pa and t = max{t1, t2, . . . , tr}.

Proof. Since G is Abelian, we have that G = H × G̃, where G̃ ∼= G/H and

|G̃| = d.
Note that

γi,j = Tr ρj(αi) =

d∑
k=1

Tr ρj(g̃
−1
k )li,(k−1)pa+1 =

d∑
k=1

χj(g̃
−1
k )li,(k−1)pa+1

for all 1 ≤ i ≤ r, 1 ≤ j ≤ d. Let ej = d−1
∑d

k=1 χj(g̃
−1
k )g̃k for 1 ≤ j ≤ d.

Then it follows from Theorem 2.12 in [3] that e1, e2, . . . , ed are the primitive

orthogonal idempotents of K[G̃]. Without loss of generality, we can assume
that γi,j = 0 for all 1 ≤ i ≤ r, t + 1 ≤ j ≤ d and γi,j ̸= 0 for all 1 ≤ j ≤ t for
some i ∈ {1, 2, . . . , r} by reordering ρj(αi) for all 1 ≤ i ≤ r, 1 ≤ j ≤ d.

(1) ⇒ (2) It’s easy to see that if γi,j = 0 for all 1 ≤ i ≤ r, t + 1 ≤ j ≤ d,
then et+1, . . . , ed belong to Ker(L|G̃) ⊆ KerL. Thus, the ideal I generated

by et+1, . . . , ed belongs to KerL. Since G̃ is Abelian, it is easy to check that
ej g̃k = χj(g̃k)ej for all 1 ≤ j, k ≤ d. Hence we have ej g̃k ∈ KerL for all
t + 1 ≤ j ≤ d, 1 ≤ k ≤ d. Note that ejhq ∈ KerL for all t + 1 ≤ j ≤ d,
1 ≤ q ≤ pa. Then we have equations (4.1) for all 1 ≤ i ≤ r, t + 1 ≤ j ≤ d. It

follows from Proposition 2.3 that Ker(L|G̃) is a Mathieu-Zhao space of K[G̃].
That is, Ker(L|G/H) is a Mathieu-Zhao space of K[G/H]. Since p ∤ |G/H|, the
conclusion follows from Corollary 4.3.
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(2) ⇒ (1) If γi,j = 0 for all 1 ≤ i ≤ r, t + 1 ≤ j ≤ d, then et+1, . . . , ed ∈
Ker(L|G̃) ⊆ KerL. It is easy to check that ej g̃k = χj(g̃k)ej and ej g̃khq =
χj(g̃k)ejhq for all t + 1 ≤ j ≤ d, 1 ≤ k ≤ d, 1 ≤ q ≤ pa. Therefore, we have
I ⊆ KerL, where I is an ideal generated by et+1, . . . , ed. Since e1, . . . , ed are the

primitive orthogonal idempotent elements of K[G̃] and there are 2d idempotent

elements in K[G̃], we have that any idempotent of K[G̃] is a sum of some of the
ej for 1 ≤ j ≤ d. Note that the condition that γi,1d1+γi,2d2+ · · ·+γi,tidti ̸= 0

for some i ∈ {1, 2, . . . , r} for all nonzero vectors d̃ = (d1, d2, . . . , dti) and dji ∈
{0, 1} is equivalent to that any sum of some of the ej is not in Ker(L|G̃) except
zero for all 1 ≤ j ≤ t. Hence any sum of some of the ej is not in Ker(L|G̃)
for all 1 ≤ j ≤ d if it contains ej0 for some j0 ∈ {1, 2, . . . , t}. Thus, any sum
of some of the ej is not in KerL for all 1 ≤ j ≤ d if it contains ej0 for some

j0 ∈ {1, 2, . . . , t}. Otherwise, the sum of ej belong to KerL∩K[G̃] = Ker(L|G̃)
for 1 ≤ j ≤ d, which is a contradiction. It follows from Lemma 4.4 that
K[G] and K[G̃] have the same idempotents. Hence KerL/I has no nonzero
idempotent. It follows from Theorem 4.2 in [8] that KerL/I is a Mathieu-Zhao
space of K[G]/I. Hence it follows from Proposition 2.7 in [8] that KerL is a
Mathieu-Zhao space of K[G]. □

Remark 4.6. If G is cyclic in Theorem 4.5, then all the primitive orthogonal
idempotent elements of K[G] are ej = d−1(1+(ξd−1)j−1g̃+ · · ·+ ξj−1g̃d−1) for

1 ≤ j ≤ d, where ξ is a d-th root of unity and G̃ is generated by g̃, where G̃ be
as in Theorem 4.5.

5. The kernels of the class functions of finite group algebras

Condition 2: Let L and G be as in Problem 1.2 andK a field of characteristic
zero or a field of characteristic p, p ∤ |G|, L2, . . . , Lr are class functions of G
and K is a split field for G

Proposition 5.1. Let L, G, K be as in Condition 2 and L1 is class functions
of G. Then the following statements are equivalent:

(1) KerL is a Mathieu-Zhao space of K[G].
(2) ai,1d1 + ai,2d2 + · · · + ai,tidti ̸= 0 for some i ∈ {1, 2, . . . , r} for all

nonzero vectors d̃ = (d1, d2, . . . , dti) and dji ∈ {0, 1, . . . , nji} for 1 ≤ ji ≤ ti,
ti ∈ {1, . . . , s}, where Li =

∑s
j=1 ai,jχj and χ1, . . . , χs are the distinct (up

to isomorphism) irreducible characters of G and nj = χj(1), ai,j ∈ K for all
1 ≤ i ≤ r, 1 ≤ j ≤ s.

Proof. Since L1, . . . , Lr are class functions of G, we have Li =
∑s

j=1 ai,jχj ,
where ai,j ∈ K for all 1 ≤ i ≤ r, 1 ≤ j ≤ s. Hence we have

KerL = {β ∈ K[G] |
s∑

j=1

ai,jχj(β) = 0 for all 1 ≤ i ≤ r}.



THE KERNELS OF THE LINEAR MAPS OF FINITE GROUP ALGEBRAS 59

Since K[G] is semi-simple and K is a split field for G, K[G] can be written
as the product of matrices over K. That is, K[G] ∼= Mn1

(K) × Mn2
(K) ×

· · · ×Mns(K) := A. It’s easy to see that there exists Aj ∈ Mnj (K) such that
TrAj = χj(β) for 1 ≤ j ≤ s. Then we have

KerL = {(A1, . . . , As) ∈ A |
s∑

j=1

ai,j TrAj = 0 for all 1 ≤ i ≤ r}.

We can assume that ai,j ̸= 0 for all 1 ≤ j ≤ t for some i ∈ {1, 2, . . . , r} and
ai,j = 0 for all 1 ≤ i ≤ r, t + 1 ≤ j ≤ s by reordering χj for 1 ≤ j ≤ s. Then
we have 0× · · · × 0×Mnt+1(K)× · · · ×Mns(K) ⊆ KerL and

0× · · · ×Mnk
(K)× 0× · · · ×

n−t columns︷ ︸︸ ︷
0× · · · × 0 ⊈ KerL,

where t = max{t1, t2, . . . , tr}.
(1) ⇒ (2) Suppose that ai,1d1 + ai,2d2 + · · ·+ ai,tidti = 0 for some nonzero

vectors d̃ = (d1, d2, . . . , dti) and dji ∈ {0, 1, . . . , nji} for 1 ≤ ji ≤ ti for all
1 ≤ i ≤ r. Then e = (A1, . . . , At, 0, . . . , 0) is an idempotent of KerL, where

Ak =

(
Idk

0
0 0

)
and TrAk = dk for all 1 ≤ k ≤ t. Since KerL is a Mathieu-Zhao space
of K[G], we have K[G]eK[G] ⊆ KerL. That is, (Mn1

(K)A1Mn1
(K), . . .,

Mnt
(K)AtMnt

(K), 0, . . . , 0) ⊆ KerL. Since Mnk
(K)AkMnk

(K) is a submod-
ule of Mnk

(K) and Mnk
(K) is simple, we have Mnk

(K)AkMnk
(K) = 0 or

Mnk
(K). Without loss of generality, we can assume that A1 ̸= 0. Then we

have Mn1(K)A1Mn1(K) = Mn1(K). That is, Mn1(K) × 0 × · · · × 0 ⊆ KerL,
which is a contradiction. Then the conclusion follows.

(2) ⇒ (1) Let I = 0×· · ·×0×Mnt+1
(K)×· · ·×Mns

(K). Then I is an ideal
of A. We claim that KerL/I has no nonzero idempotent. Suppose that e is a

nonzero idempotent of KerL/I. Then we have e = (Ã1, . . . , Ãt, 0, . . . , 0) and Ãk

is similar to Ak for all 1 ≤ k ≤ t, where Ak is defined as above. Thus, we have
Tr Ãk ∈ {0, 1, . . . , nk} for all 1 ≤ k ≤ t and at least one of Tr Ãk is nonzero for

1 ≤ k ≤ t. Let d̃ = (d1, d2, . . . , dt) = (Tr Ã1,Tr Ã2, . . . ,Tr Ãt) ̸= (0, 0, . . . , 0).
Then ai,1d1+ai,2d2+· · ·+ai,tidti = 0 for all 1 ≤ i ≤ r, which is a contradiction.
Hence the claim follows. It follows from Theorem 4.2 in [8] that KerL/I is a
Mathieu-Zhao space of A/I. Then it follows from Proposition 2.7 in [8] that
KerL is a Mathieu-Zhao space of K[G]. □

Corollary 5.2. Let K be a field and V ={(A1, . . . , As) ∈ A |
∑s

j=1 ai,j TrAj =

0 for all 1 ≤ i ≤ r}, where A = Mn1(K)×· · ·×Mns(K). Then V is a Mathieu-
Zhao space of A if and only if ai,1d1 + ai,2d2 + · · · + ai,tidti ̸= 0 for some i ∈
{1, 2, . . . , r} for all nonzero vectors d̃ = (d1, d2, . . . , dti) and dji ∈ {0, 1, . . . , nji}
for 1 ≤ ji ≤ ti, ti ∈ {1, . . . , s}.
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Proof. The conclusion follows from the proof of Proposition 5.1. □

Theorem 5.3. Let L and G be as in Problem 1.2 and K a field of characteristic
p. If G has a normal Sylow p-subgroup H and L1, . . . , Lr are class functions
of G/H and K is a split field for G/H, then the following statements are
equivalent:

(1) KerL is a Mathieu-Zhao space of K[G].
(2) ai,1d1 + ai,2d2 + · · · + ai,tidti ̸= 0 for some i ∈ {1, 2, . . . , r} for all

nonzero vectors d̃ = (d1, d2, . . . , dti) and dji ∈ {0, 1, . . . , nji} for 1 ≤ ji ≤ ti,
ti ∈ {1, . . . , s}, where Li =

∑s
j=1 ai,jχj and χ1, . . . , χs are the distinct (up to

isomorphism) irreducible characters of G/H and nj = χj(1), ai,j ∈ K for all
1 ≤ i ≤ r, 1 ≤ j ≤ s.

Proof. Let |G| = pad, p ∤ d and G = ∪d
j=1g̃jH, H = {h1, h2, . . . , ht̃} with

t̃ = pa. Then we have Li(g̃jh1) = Li(g̃jh2) = · · · = Li(g̃jht̃) for all 1 ≤ i ≤ r,
1 ≤ j ≤ d. Hence the conclusion follows from Proposition 3.1 and Proposition
5.1. □

Remark 5.4. It’s easy to see that KerL = VG if L = n1χ1+n2χ2+· · ·+nsχs and
χ1, . . . , χs are the distinct (up to isomorphism) irreducible characters of K[G].
If G has a normal Sylow p-subgroup H, then Theorem 5.3 implies Theorem 1.5
in [10].

Proposition 5.5. Let L, G, K be as in Condition 2. Then the following two
statements are equivalent:

(1) KerL is a Mathieu-Zhao space of K[G].
(2) For all 0 ̸= b = (b1, . . . , bs) ∈ {0, 1, . . . , n1} × · · · × {0, 1, . . . , ns} with

ai,1b1 + ai,2b2 + · · ·+ ai,sbs = 0 for all 1 ≤ i ≤ r − 1, the following are true:
(a) there exists a λm ∈ K such that Cm = λmInm

for all m ∈ Tb,
(b)

∑
m∈Tb

nmλmbm +
∑

m∈Sb
nm Tr(Cm) ̸= 0,

where Li =
∑s

j=1 ai,jχj, χ1, . . . , χs are the distinct (up to isomorphism) irre-

ducible characters of K[G] and nj = χj(1), Cj = ρj(αr), αr =
∑n

j=1 lr,jg
−1
j ,

G = {g1, . . . , gn}, ρj is an irreducible representation according to χj, ai,j ∈ K∗

for all 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s and Tb := {1 ≤ m ≤ s | bm ̸= 0, nm},
Sb := {1 ≤ m ≤ s | bm = nm}.

Proof. Since L1, . . . , Lr−1 are class functions of G, we have

Li =

s∑
j=1

ai,jχj

for all 1 ≤ i ≤ r − 1. Since ai,j ∈ K∗ for all 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s, we have

KerL = {β ∈ K[G] |
s∑

j=1

ai,jχj(β) = 0 and Lr(β) = 0 for all 1 ≤ i ≤ r − 1}.
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SinceK[G] is semi-simple, we haveK[G]∼=Mn1
(K)×Mn2

(K)×· · ·×Mns
(K) :=

A. It’s easy to see that there exists Aj ∈ Mnj
(K) such that TrAj = χj(β) for

all 1 ≤ j ≤ s. It follows from Lemma 2.13 and Theorem 2.14 that Lr(β) = 0 if
and only if

s∑
j=1

nj Tr(CjAj) = 0,

where Aj = ρj(β) and Cj = ρj(αr), αr =
∑n

j=1 lr,jg
−1
j for all 1 ≤ j ≤ s.

(2) ⇒ (1) Since KerL ∼= V and

V = {(A1, . . . , As) ∈ A |
s∑

j=1

ai,j TrAj = 0 and

s∑
j=1

nj Tr(CjAj) = 0

for all 1 ≤ i ≤ r − 1}

and for all 0 ̸= b = (b1, b2, . . . , bs) ∈ {0, 1, . . . , n1} × · · · × {0, 1, . . . , ns} with
ai,1b1 + ai,2b2 + · · ·+ ai,sbs = 0 for all 1 ≤ i ≤ r − 1, we have that:

(a) there exists a λm ∈ K such that Cm = λmInm for all m ∈ Tb,
(b)

∑
m∈Tb

nmλmbm +
∑

m∈Sb
nm Tr(Cm) ̸= 0.

Now suppose that V contains a nonzero idempotent (E1, . . . , Es) and bj =
Tr(Ej) for 1 ≤ j ≤ s. Then we have that ai,1b1 + · · · + ai,sbs = 0 for all
1 ≤ i ≤ r − 1 and (a), (b) hold. Hence we have∑

m∈Tb

nmλmbm +
∑
m∈Sb

nm Tr(Cm) ̸= 0,

which contradicts with (E1, . . . , Es) ∈ V . Thus, V does not contain any
nonzero idempotent and hence is Mathieu-Zhao space of K[G]. Then the con-
clusion follows.

(1) ⇒ (2) Suppose that KerL is a Mathieu-Zhao space of K[G] and there
exists a 0 ̸= b = (b1, . . . , bs) ∈ {0, . . . , n1}× · · · × {0, . . . , ns} with ai,1b1 + · · ·+
ai,sbs = 0 for all 1 ≤ i ≤ r − 1 such that (a) does not hold. Then there is an
m ∈ Tb such that Cm is not a multiple of the identity matrix. Let Ej be the
matrix with ones on the first bj diagonal entries and zeros on all other entries
for all 1 ≤ j ≤ s with j ̸= m. Then Ej is an idempotent of rank bj . It follows
from Lemma 4.6 in [4] that there exists an idempotent Em of rank bm ̸= 0, nm

such that

Tr(CmEm) = − 1

nm

∑
j ̸=m

nj Tr(CjEj).

Since TrEj = rankEj for all 1 ≤ j ≤ s, we have that (E1, E2, . . . , Es) is a
nonzero idempotent which contained in V . This contradicts with that V is a
Mathieu-Zhao space of A.

Suppose that there exists a 0 ̸= b = (b1, . . . , bs) ∈ {0, . . . , n1} × · · · ×
{0, . . . , ns} with ai,1b1 + · · · + ai,sbs = 0 for all 1 ≤ i ≤ r − 1 such that
(1) does hold but (2) does not hold. Let Ej be the matrix with ones on the
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first bj diagonal entries and zero on all other entries. Then Ej is an idempotent
of rank bj . Since TrEj = rankEj for all 1 ≤ j ≤ s, we have∑

m∈Tb

nmλmbm +
∑
m∈Sb

nm Tr(Cm) = 0,

which exactly means that (E1, . . . , Es) is contained in V . As b ̸= 0, we have
that V contains a nonzero idempotent, which contradicts with that V is a
Mathieu-Zhao space of A. Then the conclusion follows. □

We can remove the condition that ai,j ∈ K∗ for all 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s
in Proposition 5.5 by introducing a new set X := {ai,j | there exists ij ∈
{1, 2, . . . , r − 1} such that aij ,j ̸= 0 for 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s}. Then we
have the following theorem.

Theorem 5.6. Let L, G, K be as in Condition 2. Then the following two
statements are equivalent:

(1) KerL is a Mathieu-Zhao space of K[G].
(2) For all 0 ̸= b = (bk1

, bk2
, . . . , bkt

) ∈ {0, 1, . . . , nk1
} × · · · × {0, 1, . . . , nkt

}
with ai,k1bk1 + ai,k2bk2 + · · · + ai,ktbkt = 0 for all 1 ≤ i ≤ r − 1, the following
are true:

(a) there exists a λm ∈ K such that Cm = λmInm
for all m ∈ Tb ∩X,

(b)
∑

m∈Tb∩X nmλmbm +
∑

m∈Sb∩X nm Tr(Cm) ̸= 0,

where Li =
∑s

j=1 ai,jχj, χ1, . . . , χs are the distinct (up to isomorphism) ir-

reducible characters of K[G], ai,j ∈ K and nj = χj(1), Cj = ρj(αr), αr =∑n
j=1 lr,jg

−1
j , G = {g1, . . . , gn}, ρj is an irreducible representation according

to χj for all 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s and Tb := {1 ≤ m ≤ s | bm ̸= 0, nm},
Sb := {1 ≤ m ≤ s | bm = nm}, X = {ai,j | there exists ij ∈ {1, 2, . . . , r −
1} such that aij ,j ̸= 0 for 1 ≤ i ≤ r−1, 1 ≤ j ≤ s} = {ai,k1

, . . . , ai,kt
for 1 ≤

i ≤ r − 1}.

Proof. The conclusion follows by following the arguments of Proposition 5.5.
□

Proposition 5.7. Let L and G be as in Problem 1.2 and K a field of charac-
teristic p, |G| = pad, H a normal Sylow p-subgroup of G and G = ∪d

j=1g̃jH,

H = {1H , h2, . . . , ht̃} for t̃ = pa. Suppose that Lr(g̃jh2) = Lr(g̃jh3) = · · · =
Lr(g̃jht̃) for all 1 ≤ j ≤ d and K is a split field for G/H. If there exist

ĩ, î ∈ {1, 2, . . . , r} such that detMLĩ|G/H
̸= 0 and detMLî

̸= 0 and L1, . . . , Lr−1

are class functions of G/H, then the following two statements are equivalent:
(1) KerL is a Mathieu-Zhao space of K[G].
(2) For all 0 ̸= b = (bk1 , bk2 , . . . , bkt) ∈ {0, 1, . . . , nk1} × · · · × {0, 1, . . . , nkt}

with ai,k1
bk1

+ ai,k2
bk2

+ · · · + ai,kt
bkt

= 0 for all 1 ≤ i ≤ r − 1, the following
are true:

(a) there exists a λm ∈ K such that Cm = λmInm
for all m ∈ Tb ∩X,
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(b)
∑

m∈Tb∩X nmλmbm +
∑

m∈Sb∩X nm Tr(Cm) ̸= 0,

where Li =
∑s

j=1 ai,jχj, χ1, . . . , χs are the distinct (up to isomorphism) ir-

reducible characters of K[G], ai,j ∈ K and nj = χj(1), Cj = ρj(αr), αr =∑d
j=1 lr,j g̃

−1
j , G/H = {g̃1, . . . , g̃d}, ρj is an irreducible representation accord-

ing to χj for all 1 ≤ i ≤ r−1, 1 ≤ j ≤ s and MLĩ|G/H
, MLî

be as in Proposition
3.4; Tb, Sb, X be as in Theorem 5.6.

Proof. Since L1, . . . , Lr−1 are class functions of G/H, we have Li(g̃j1H) =
Li(g̃jh2) = · · · = Li(g̃jht̃) for all 1 ≤ i ≤ r−1. Then it follows from Proposition
3.4 that KerL is a Mathieu-Zhao space of K[G] if and only if Ker(L|G/H) is a
Mathieu-Zhao space of K[G/H]. Since p ∤ |G/H|, the conclusion follows from
Theorem 5.6. □
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