• Title/Summary/Keyword: linear equations

Search Result 2,506, Processing Time 0.021 seconds

HYPER ORDER OF SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS IN THE DISC

  • Chen, Zong-Xuan;Shon, Kwang-Ho
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.155-165
    • /
    • 2009
  • We investigate the growth of solutions of complex linear differential equations in the unit disc. We obtain properties of solutions of differential equations with entire coefficients. We use the concept of the hyper order to estimate the growth of solutions.

  • PDF

QUEUE LENGTH DISTRIBUTION IN A QUEUE WITH RELATIVE PRIORITIES

  • Kim, Jeong-Sim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.107-116
    • /
    • 2009
  • We consider a single server multi-class queueing model with Poisson arrivals and relative priorities. For this queue, we derive a system of equations for the transform of the queue length distribution. Using this system of equations we find the moments of the queue length distribution as a solution of linear equations.

An Examination on the Singularoty of Grad Moment Equation for Shock Wave Problems

  • 오영기
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.385-390
    • /
    • 1996
  • It has been well known that the Grad thirteen-moment equations have solutions only when the Mach number is less than a limiting value for the stationary plane shock-waves. The limit of Mach number has been re-examined by including successive terms in the series expansion of distribution function. The method employed is the linear analysis of moment equations near up-streaming and down-streaming flows. For the thirteen moment case, it has been confirmed that equations have solutions only when the Mach number is less than 1.6503, which is consistent with the literature value. For the case of twenty moments, the limit of Mach number is decreased to 1.3416.

ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIAL

  • Cho, Yonggeun;Lee, Misung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1601-1615
    • /
    • 2019
  • We show the existence of ground state and orbital stability of standing waves of nonlinear $Schr{\ddot{o}}dinger$ equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in $H^1$. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.

A FIFTH-ORDER IMPROVEMENT OF THE EULER-CHEBYSHEV METHOD FOR SOLVING NON-LINEAR EQUATIONS

  • Kim, Weonbae;Chun, Changbum;Kim, Yong-Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.437-447
    • /
    • 2011
  • In this paper we present a new variant of the Euler-Chebyshev method for solving nonlinear equations. Analysis of convergence is given to show that the presented methods are at least fifth-order convergent. Several numerical examples are given to illustrate that newly presented methods can be competitive to other known fifth-order methods and the Newton method in the efficiency and performance.

ANALYTIC TREATMENT FOR GENERALIZED (m + 1)-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS

  • AZ-ZO'BI, EMAD A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.289-294
    • /
    • 2018
  • In this work, a recently developed semi-analytic technique, so called the residual power series method, is generalized to process higher-dimensional linear and nonlinear partial differential equations. The solutions obtained takes a form of an infinite power series which can, in turn, be expressed in a closed exact form. The results reveal that the proposed generalization is very effective, convenient and simple. This is achieved by handling the (m+1)-dimensional Burgers equation.

AN EXISTENCE OF THE SOLUTION TO NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS UNDER SPECIAL CONDITIONS

  • KIM, YOUNG-HO
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.1_2
    • /
    • pp.53-63
    • /
    • 2019
  • In this paper, we show the existence of solution of the neutral stochastic functional differential equations under non-Lipschitz condition, a weakened linear growth condition and a contractive condition. Furthermore, in order to obtain the existence of solution to the equation we used the Picard sequence.

Proposal of Models to Estimate the Coefficient of Permeability of Soils on the Natural Terrain considering Geological Conditions (지질조건에 따른 자연사면 토층의 투수계수 산정모델 제안)

  • Jun, Duk-Chan;Song, Young-Suk;Han, Shin-In
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2010
  • The soil tests have been performed on the specimens obtained from about 1,150 sites including landslides and non-landslides areas in natural terrains for last 10 years. Based on the results of those tests, the average soil properties are estimated and the simple equations for estimating permeability are proposed according to geologic conditions. The average permeability in Granite and Mudstone sites is higher than other sites and the content of silt and clay in Mudstone and Gneiss sites is higher than other sites. The correlation analysis and the regression analysis were performed to estimate the coefficient of permeability according to geological conditions. As the result of the correlation analysis, the coefficient of permeability is selected as a dependent variable, and the silt and clay contents, the water contents and the dry unit weights are selected as independent variables. As the result of the regression analysis, the silt and clay contents and the void ratio were involved commonly in the linear regression equations according to geological conditions. To verify the proposed the linear regression equations, the measured result of the coefficient of permeability at other sites was compared with the result predicted with the proposed equations. As the result of comparison, there were a little bit different between them for some data. However the difference was relatively small. Therefore, the linear regression equations for estimating the coefficient of permeability according to geological conditions may be applied to Korean soils. However, these equations should be verified and corrected continuously to improve the accuracy.

INFINITE HORIZON OPTIMAL CONTROL PROBLEMS OF BACKWARD STOCHASTIC DELAY DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Liang, Hong;Zhou, Jianjun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.311-330
    • /
    • 2020
  • This paper investigates infinite horizon optimal control problems driven by a class of backward stochastic delay differential equations in Hilbert spaces. We first obtain a prior estimate for the solutions of state equations, by which the existence and uniqueness results are proved. Meanwhile, necessary and sufficient conditions for optimal control problems on an infinite horizon are derived by introducing time-advanced stochastic differential equations as adjoint equations. Finally, the theoretical results are applied to a linear-quadratic control problem.