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INFINITE HORIZON OPTIMAL CONTROL PROBLEMS OF
BACKWARD STOCHASTIC DELAY DIFFERENTIAL
EQUATIONS IN HILBERT SPACES

HONG LIANG AND JIANJUN ZHOU

ABSTRACT. This paper investigates infinite horizon optimal control prob-
lems driven by a class of backward stochastic delay differential equations
in Hilbert spaces. We first obtain a prior estimate for the solutions of
state equations, by which the existence and uniqueness results are proved.
Meanwhile, necessary and sufficient conditions for optimal control prob-
lems on an infinite horizon are derived by introducing time-advanced sto-
chastic differential equations as adjoint equations. Finally, the theoretical
results are applied to a linear-quadratic control problem.

1. Introduction

Peng and Pardoux [11] first proposed the following backward stochastic dif-
ferential equations (BSDEs) in 1990:

/ G, (s), 2(s))ds + / 2(s)AW (s), y(T) =&,

and proved the existence and uniqueness of solutions. Since BSDEs have been
widely applied to control, finance, insurance, operations research and other
fields, researchers systematically studied the theory of BSDEs in [3,7]. Mao
[10] established the existence and uniqueness theorem of adapt solutions of
BSDEs under non-lipschitz conditions.

The BSDEs theory in Hilbert spaces is regarded as a natural extension of
finite dimensional BSDEs theory and have been extensively studied. Bensous-
san [1] obtained the solution of BSDEs in Hilbert spaces with special linear
case by approximation method. Hu and Peng [6] solved the solution of BSDEs
in Hilbert spaces in general linear case by functional analysis method.
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Cylindrical Wiener process appears in various models of infinite dimensional
space in the form of random noise or random disturbance [12]. Fuhrman and
Tessitore [5] studied the BSDEs driven by cylindrical Wiener process with
values in Hilbert spaces in the following form:

o= [ Gl xends <3 [ uods+ [ oawis) - [ sy

and established the existence and uniqueness theorem of solutions.

Levy process also covers basic mathematics, statistics, economics, engineer-
ing and other fields. In recent years, its relevant theories have developed rapidly
as an important branch of modern probability theory. Tang and Li [13] intro-
duced Poisson random measure independent of Brownian motion in BSDEs and
obtained the existence and uniqueness of solutions. Yin and Mao [15] studied
a class of BSDEs with Poisson jump and random termination time and ob-
tained the existence and uniqueness of solutions. Meanwhile, BSDEs-related
control problems have also received great attention. Li [9] studied the sto-
chastic optimal control problem with jumps by using the backward stochastic
theory; Yu [16] investigated coupled forward-backward stochastic differential
equations and related linear-quadratic problems.

Stochastic systems with time-delay characteristics are common in the fields
of epidemiology, engineering and risk management. Comparing with general
stochastic control problems, the development of systems with time-delay de-
pend not only on their current state, but also on previous information. Since
the initial research of Kolmanovskii and Maizenberg [8], the control problems
of random systems with time-delay have attracted the attention of many re-
searchers. In 2010, [4] introduced a class of BSDEs with time-delay generator,
which proved the existence and uniqueness of the solutions for a small enough
time range or for a generator satisfying a small enough Lipschitz constant.
Chen and Huang [2] obtained the maximal principle of BSDEs with recursive
time-delay by introducing the relevant time-advanced stochastic differential
equations (ASDEs) as adjoint equation. Recently, [14] established a stochastic
maximum principle of the optimal control problems of forward-backward delay
systems involving impulse controls.

In this paper, we consider the following recursive delayed BSDEs driven by
both Cylindrical Wiener processes and Poisson processes on infinite horizon:

s—0

(1.1) T )‘/t y(s)d3+/tTZ(S)dW(8)+/tT/g r(s,e)N(ds, de)

T
—/t f(s)ds, t €10,T],
y(s) = ¢(s),z(s) = Y(s),s € [-4,0),

y(T)—y(t) = — / Glsu(s), [ ols. Dyt)alds), =(s). (s, )ds
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where the notations and mappings will be given in Section 2 and Section 3.
We adopt the model with cylindrical Wiener process and Poisson jump process
which characterize practical phenomena more accurate than others. By means
of conditioning to time parameters and equation coefficients, we generalize the
theory started with the article by Chen and Huang [2] to an infinite dimensional
framework. We will show that under our assumptions, for sufficiently large
values of A, (1.1) exists a unique solution. Then we state controlled backward
stochastic delayed system and introduce ASDEs as adjoint equations by duality
between them. Then the maximal principle are derived.

This paper is organized as follows. In Section 2, we give some necessary
notations and state some preliminary results about backward stochastic delay
differential equations (BSDDEs). The existence and uniqueness of solution to
(1.1) is proved. In Section 3, we establish necessary and sufficient conditions
of optimality. In Section 4, we apply the results obtained in Section 3 to study
a linear-quadratic optimal control problem.

2. Preliminaries

Let Z, K and H denote real separable Hilbert spaces, with scalar products
(-,)z, {-,)x and (-, -) g, respectively. We use the symbol |-| to denote the norm
in various spaces, with a subscript if necessary. L(Z, K) denotes the space of
all bounded linear operators from = into K, endowed with the usual operator
norm. The space of the Hilbert Schmidt operators from E to K is L2(E, K),
which is given the Hilbert-Schmidt norm, making it a separable Hilbert space.

Let (2, F, P) be a complete space with a filtration {F;};>¢ which satisfies
the usual condition, i.e., {F;}+>0 is a right continuous increasing family of sub
o-algebra of F and Fy contains all P-null sets of F. The filtration {F;};>0 is
generated by two mutually independent stochastic sources. One is cylindrical
Wiener process {W(t),¢ > 0}, and the other is Poisson measure {k(t),t > 0}
with compensators defined on a measurable space (£,B(€)) . Here, 7(e) is
a given o-finite measure on the measurable space (€, B(£)) satisfying [.(1 A
le|?)m(de) < oo. We use N(dt,de) to represent the Poisson counting measure
induced by k(t). The compensators of N is N(dt,de) = N(dt,de) — n(de)dt
for any A € B(E) satisfying m(A) < oo such that {N((0,] x A) = (N —
N)((0,¢] x A),0 < t < oo} is a martingale. All the concepts of measurability
(e.g., predictability, etc.) for stochastic processes refer to this filtration. By P
we denote the predictable o-algebra generated by predictable processes. B(()
denotes the Borel g-algebra of any topological space (2.

We introduce some spaces:

Expression L%(Q x Ry; K) denotes the space of equivalence classes of pro-
cesses y € L?(Q x Ry ; K), admitting a predictable version. It is endowed with
the norm

Wm0 = E | (O



314 H. LIANG AND J. ZHOU

Expression L7 (€; L%(K))7 defined for 8 € R and p,q € [1,00), denotes the
space of equivalence classes of processes {y(t),t > 0}, with values in K, such

that the norm
iy ~E ([ i)

is finite, and y(¢) admits a predictable version.
Expression L?(€ x Ry, B(E),m; K) denotes the space of equivalence classes
of m-measurable processes r(-) (P-a.s.), with values in K, such that

e =( |r<->|%(7rd<e>)é <

Expression L% (E; L% (K)), defined for § € R, denotes the space of equiva-
lence classes of {r(t,-),t > 0}, with values in K, such that the norm

o0 g g
P _ apt )2
- E{A ¢ thnmeg ﬁ}
p

E<A er@)ﬁﬁ)q

is finite, and 7(¢,-) admits a predictable version.

Now, let us consider a kind of infinite horizon BSDDE as follows:

s—0

(2.1) +A/t y(S)dSﬂL/tTZ(S)dW(sH/tTL r(s,e)N(ds, de)

T
f/t f(s)ds, t €[0,T1,

y(S) = <p(s), s € [_67 O)‘
Where )\ is a given real parameter, § is a time delay parameter, « is a o-
finite measure, and ¢(-,-) is a locally bounded precess. The function G :  x
[0,00) x K x La(E, K) x L*(€ x Ry, B(E),m; K) is measurable with respect
to PRQB(K)RB(L2(Z,K)) QB(L*(E x R, B(E),n; K)) and B(K). f: 8 x
[0,00) — K is a predictable process with integrable paths.

As a matter of convenience, we set

o) = | ;¢<s,t>y<t>a<dt>.

We assume the following assumptions:

T s
y(T)—y(t)= — / Gls.y(s), [ o(s,(t)aldt), 2(s), (s, ))ds
T

(H2.1) G is Lipschitz continuous with respect to (y,ys,z,7(:)), i.e., there
exist nonnegative constants L,,Ls,L, and L,, such that for any s € [0, c0),
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Lyt uky2 € K, 24, 2% € Ly(E,K), and r'(-),r?(-) € L*(€ x Ry, B(E), m; K),
‘G(57y17y(157zlvrl(')) - G(57927y§72277"2('))|
< Lyly' —?1+ Lslys — v3| + L2|z' — 2%| + Ly |r' —r?|.

(H2.2) G satisfies following monotonicity condition, i.e., there exists a non-
negative constant u such that for any s € [0,00), y*, 4%, ys € K,z € Ly(E, K),
and r(-) € L?(€ x Ry, B(€),m; K),

<G(57y17y57 Z,’I’(')) - G(57y27y53 Z,’I"(')),yl - y2> < *,Lt|y1 - y2‘2'
(H2.3) For any s € [0, 00), there exists p € [2,00) such that

b

(o) 2
E(/ e2ﬂs|G(s,0,O7O,0)|ds) < 00.
0

(H2.4) |¢(s,t)| < M for any t,s € [—0,T] and some M > 0, and the following
condition holds:

0
M2(52/ e 2Pra(dr) < 1.
-5
We start by proving a prior estimate for the solution of (2.1).

Theorem 2.1. Suppose that hypothesis (H2.1)~(H2.4) hold for some p €
[2,00). We further assume that there exist processes (y',z%,r'(:)) € L% (%
L3(K)) x L (Q; L3(La(Z, K))) x Lip(Q; L3(La (€ X Ry, B(E), m; K))) for some
BERNER,(1=1,2),

(2.2)

T T T
Y (T)—yi(t) = — / Gls,yf sy 27 ())ds A / yi(s)ds— / £i(s)ds
T T
—l—/t zi(s)dW(s)—i—/t /Eri(s,e)ﬁ(ds,de), t € 10,7,

y'(s) = ¢(s), s € [=4,0).

— 2 2 2
Then for every \ > M725 fi)(; e 2Pra(dr) —p—pu+ %, there exists C' > 0
such that for\ > X,

(A =N (t) - Y2(O)| Lz (2 (ry) + (A — N2z (t) — z2(t) e (L

1
+ A=)zt ) =2t )|ee @2 (Lo (e x Ry B)(E) 7))

5 5(L2(8.K)))

1
+ (A= X2 (E sup 7% |y, (1) — y2<t>|p)
t>0

< Clfi(t) — fz(t)|L;’,(Q;Lg(K))-

Proof. We denote
G(s) = y'(s) = y2(s), 4s(s) = ys(s) —y3(s), 2(s):=z'(s) = 2%(s)
F(5) = 11(s) = F2(5), #(s,€) i= (s, ) — 12(s,),
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G(S) = G<57 yl(s)’ y}S(S)a Zl(s)a Tl(ta )) - G(S7 y2(8), yg(S), 22(8)? TQ(Sv ))
Applying the It6 formula to the process e?*|fj(t)|?, we obtain

(23) AP - TP
T
b [ R+ NP + R + (s, ds
Tt R T
- / 2255 (5 (3), Gi(s))ds — / 26295 (j(5), 2(5)dW (s))
T T
+ / 26255 (5 (s), f (s))ds / €255 (s), /E #(s, &) N (ds, de)).

By assumptions (H2.1) and (H2.2), we obtain

2(j(s), G(s))
—2u0g(s)|* + 2L:[g(s)||2(5)| + 2Ls|5 ()95 (5)| + 2L |5 ()| (s, €)]]

(—m + L‘*”;“) B+ p (962 + 26) + 175 )2)

IN

IN

where p is an arbitrary constant in (0, 1], which we will discuss later. Then by
(2.3), we obtain

(2.4) e g(t)* — 2T |y(T)[?

T 2 2 2
Li+L:+L
+/ e2Bs (25+2)\+2N— 6""2""7“) [9(s)|?ds
t p

T
*/t 9 [(1 = p)(12() + [[7(s, ) ) = plis ()] ds

IA

T T R

_ / 265 ((s), 5()dW (s)) + / 26255 ((s), f(s))ds
T

—2 [ o). [ . ds. o))

Noting that

2

T
/6255p|g}5(s)\2d5— ‘/ o(s,s+1r)y(s+r)a(dr)| ds
¢

§M25p/ 6265/ [9(s + )| a(dr)ds
t -5

0 T
< M25p/ 6_2'8T01(d’1")/ 19(s)|2e*P ds,
-5 0
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we have
(2.5)

A g))* — T Iy(T)? +/t (1= p)(I2(s)” + |17 (s, ) 1)) ds

T 2,72, 72 0
Li+Li+L
+/ e [2ﬂ+2x+2u—5+;+’“—M2ép/ e”’“a(dr)} [9(s)[*ds
. -6

0 ¢
szép/ efwra(dr)/ e?P314(s)|?ds
-5 t—5

T T
< = [ 2 AW e) + [ 26 i), Flos

= " (), [ #tse)N(as.ae)).

For any & > 0, by inequality 2ab < ca? + 1b?, we get

T T r
[ 2t s <= [ lts)Pas+ 2 [ \fo)Pas,

t

Let p =1 in the equation (2.5), then
T
AG()* — 2T [5(T))? + 2/ Bzﬁs@(S),/ #(s, €)N(ds, de))
0 £
T 0
—|—/ e?0s [2B+2A+2M—L§—L§—L§—M26/ e_QBra(dr)—s} 19(s)|*ds
t -5
0 ¢
- M2(5/ e‘zﬂra(dr)/ 24|y (s) 2 ds
= t—48

r 28s /. 2 1 r 2Bs| £ 2
< - / 279 (§(5), 2(5)dWV (5)) + - / €255 () [2ds.

Let € adequate small, we obtain
0 t
(26) g~ TP - A% [ e raan) [ s
-4 t—o
T 1 T .
< - [ 2 W) + 1 [ 26 o)
t t

Z/tT 6265@(5),/8f’(s,e)N(ds,de».

Consider the quadratic variation of stochastic integrals in (2.6), we have

( / e4ﬂsg<s>|2|2<s>|2ds> < T sup |g<a>< / é<s>l2ds>
. c€lt,T) t

1
2
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X 1 T
<5 sup (o) + 5T [ o) P,
t

o€(t,T]

|~

and

T T
</t e455|@(5)l2||f(s,-)||2d5> <e?oIT Zl[ltpT]\?J(O)l (/t IIf(8w)||2d5>

1 . 1 o
<=’ sup [g(o))2+ 52T [ |li(s, )| ds.
2 o€t T] 2 t

1
2

N

By our assumptions and (2.2) it easily get Esup, ¢, 1 e?719(0)|? < oo, then
both right sides of above inequalities are integrable random variables. Thus,
stochastic integrals in (2.6) are integrable random variables. Condition both
sides of (2.6) to F;, we get

(2.7) (o) - a2 |
-

0 ¢
67257’0&((17")/ e2P514(s)|?ds
t—o

X 1 T sl s
< PRI+ B [ fo) s
t

Let us recall the assumption [~ ¢*?*|y;(s)[*ds < oo, then we can find a se-
quence of T,, — oo such that Ee?’T»|j(T;,)| — 0. Setting T' = T}, and letting
n — 00, we obtain

g(o)? - a2 |
-

1 > A
“E / €255 f(s)[2ds

t

0 ¢
efwra(dr)/ e2P514(s)|?ds
t—6

IN

1 > :
-E” 2ps 2ds == X (t).
/O e f(s)|ds (t)

IA

€
Note that

0 t
—M26/ e_QB"a(dr)/ 28515 (s)|?ds
-5 t—s

0
> —M262/ e 2Pra(dr) sup e2P!|y(t)]2.
-0 t€[0,T]
Therefore we have
0

1 *° A

e2f8t|y(t)\2—M252/ e 2Pra(dr) sup e2P!y(t)]? < fEft/ e?P5| f(s)|ds.
-5 t€[0,T) € 0

Since X is a martingale, for all p > 2, by assumption (H2.4) and Doob and

Jensen inequalities, there exists a ¢, > 0 such that

E sup PP[j(t)|P < ¢,E (X(T))? < ZE (/ e%sf(s)?ds) .
t€[0,T €2 0
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Setting T' — oo, we arrive at

o0 . g
(2.8) Esup |3 (t)|P < c—gE (/ 6268|f(8)|2d8> < 0.
g2 0

t>0

We have

B ([ i) %

<E [Supeﬁép@(tﬂg (/ 62ﬁs|5(5)|2ds) ]
>0 0

< {Esupeﬁtpg(mp} {]E (/ 6258|z(s)|2ds) } .
t>0 0

By (2.8), the right side of the above inequality is finite. It follows that the limit

of stochastic integral ftT 2e285(§i(s), 2(s)dW (s)) for T — oo exists in L% (€2, R)
and for some c,,

P
2

(2.9) E

/ 2295 (), 2(5)dWV (s))

3 oo ]
<, {Esupeﬁtp|g(t)|p} {E (/ 6265|2(5)|2d8) }
>0 0
Similarly, we have
oo i
B ([ e i) PG, ) Pas
0

tp 2 > %
supe’?” [5(1)| % ( / ezﬂsnﬂs,-)n%s) ]
0

[N

<E

>0
1
p

< {Bsw i | {E( | it pas) } ,
>0 0

and there exists a ¢p, such that

2

(2.10) E

|2, [ it e)Nas.ae)

0 &

} = 5) 2
< e, {Bswp e ljio) | {E ([ e iits. 1) } <.
t>0 0
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Choose a sequence T), — oo such that e?’T»E|§(T,,)|?> — 0. Setting T = T}, in
(2.5) and letting n — oo we obtain

(2.11)

() + /foo P [(1 = p)(|()1* + [I7 (s, ) )]s

00 L2 L2 L2
+/ 6265 |:2B+2)\+21u_5—’_2—’_"‘
t p

0
—M%p/éewra(dr)] [9(s)|?ds
0 t
—M25p/ e_Q’BTa(dr)/ 28514 (s)|?ds
-9 t—9
< - / 26292 ((s), 2(s)dW (s))
t
+ / 2625 (5(s), f(s))ds — 2 / €263 (5 (s), / #(s,€)N(ds, de)).
t t &
Now, for simplicity, we denote
(oo}
|2|L§(L2(E,K)) = (/0 62’68|2(S)|%2(5,K)d3) )
o0 3
iz = ([ @ litoas)
o0 3
7O eg (aexny Be) mr) = (/0 62’6'S||7ﬁ(s,-)|2d8) )

iz = ([ 1 ekas)

Conditioning both sides of (2.11) to F; and choosing p < 1 so close to 1 such
L24L2+L2 2 0 _28r
that 23 +2X +2p — === — M op [~5e P a(dr) > 0, we have

[N

0 t
(2.12) 2Pt ()2 — M25p / () /t | i)ds
<E” / 262 5(s), f(5))ds
A 25 (4(s), f(s))ds
<E / 262 (4(s), f(5))d

Fo 1512 F15
SE (|y|L%(K)|f|L§(K))’

and by Doob and Jensen inequalities, there exists a ¢, > 0 such that

ﬂt N ~ b A P
(2.13) Esup ™ 5(1)" < E (73 0/ )
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It also follows from (2.11) that
2(A - 5\)|ZQ|%§(K) +c (\5’@;@2(3@) + W')\ig(b(sxm,s(s)m;z{)))
<lilzzoolfligan +| [ 26252000 261w s)
/0 " 96285 (5(s), /g f(s,e)N(ds,de»‘.

Raising to the power £, taking expectation, and recalling (2.9), (2.10) and
(2.13), we obtain, for suitable constants ¢; and any ¢,

_|_

()\ )\)ZE|y|L2(K +CIE‘2|L2 Lz K))+C2E|’F(.)|ii(L2($xR+,B(£),7T;K))

(K)|f|§§(1{)) +c {E|Z|L2 K))}% {E <|Z7|§§(K)|f|§g(;<)> }%

1

3 " 3
+¢5  EIF(: )|L2 (La(Ex Ry ,B(E),m; K))} {E (|y|z2(1{ ‘f|L2(K))}
2 a2 N citcy .2 22
c3E (|y|z%(K)|f|zg(K))+‘€E|Z(t)|L2(L2(” K))+(4> E (|y|2%(K)|f|z (K))

+ €E|f(')|[L)§(L2(£xR+,B(£),rr;K))'

VAN
&
=
—_
=
™~ wpks

IN

Choosing sufficiently small € and using Cauchy-Schwarz inequality, we obtain,
for some c,

3\ 2 ~ ~ A
(A= A2EIGIZs () + ABIZI L, (102 50y + BIFOLg (1o, 6) i)
1 1
. 3 5 3
< e {BIl 00} {EM 00 |
Taking into account (2.13) once more, we reach a conclusion
A =Mly" = v*[n oz () + (A= NE|! -2 *lp (L2 (La(2,K)))

T\ L
+ A=Azt () —r3( )|LP (L2 (L2(Ex Ry, B(E),mK)))

1

0= (Bswpely ) - 201 )
>0
<Clft = f? L2 (o L3(K))- O
Now, we prove the existence and uniqueness of the solution of equation (2.1)
under assumptions (H2.1)~(H2.4).

Theorem 2.2. Suppose that hypotheses (H2.1)~(H2.4) hold for some p €
[2,00) and assume that there exist processes f € L% (SY; L% (K)) for some 8 € R.

Then for X > MTQ‘; fis e~ 2ra(dr) — B — p+ M, the equation (2.1) has
a unique solution (y(t),z(t),r(t,-)) such that
y(t) € Lp(Q LE(K)), 2(t) € Lp( L3 (L2(E, K))),
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r(t,) € L (Q; L3(La(€ x Ry, B(E), m; K))).
Proof. Consider the space
D= Lip (0 LE(K)) XL (4 L5 (L2(E, K)))xLp (2 LG (L2 (€ xR, B(E), m; K))).-
Let D endow with the norm
Wlee @irz ) + 12ln @2 (raE00) T 17Oln @i (e xry BE),mK)))-

For every A, we define a mapping I' : D — D, setting (y(t), 2(¢t),r(t,-)) =
T(O(t), P(t), Q(t,-)) if (y(t), z(t),r(t,-)) is the solution of the equation, P-a.s.,
T s

W1) = u0) = ~ [ Gs.00), [ ats.00(0atin), P, Q(s, s
T T T ~
+)\/t y(s)ds+/t z(s)dW(s)—i—/t/gr(s,e)N(ds,de)

T
—/t f(s)ds, t €10,T),
y(S) = @(5)75 € [757 0)

2 0 _ L24+L2%24+12
By Theorem 2.1, for A > % [ose ?ra(dr) — B—p+ %,

T !
A=y - yz|L’7;(Q;L%(K)) +(A=N)72' — Z2‘L’7’,(Q;L%(L2(E,K)))

I\ ,.1 2
+ A=Az () =7 (')|L1;,(Q;L§(L2(£xR+,B(5),w;K)))

<o fn( 7 166,04, 05 P 9.4, )

—G(s,0%(s), 02, P*(s), Q*(s, -))|2ds> }5 .

Here O} = fssi(; o(s,t)O(t)a(dt),i = 1,2. By the Lipschitz condition on G, we
have, for some constant C' > 0,

A=Ny' - y2|LP,,(Q;Lg(K)) + (A= N)Ft - ZQ|L§,(Q;L§(L2(E,K)))
+ A= N2 () = 72Ol (@i (La(ex Re B(E) miE))

< cA = N0 = O%|p 2 (s + (A = NE [Pt~ P?| L (0:12 (La(2.K)))
+ (A= N21Q" () = Q)| Lo (L2 (La(Ex Ry B(E)m)

This shows that I" is a contraction in D for all A sufficiently large. Its unique
fixed point is the required solution.

Next, we define @ as the set of those real numbers A > X such that for
every f e L% (; L%(K)), there exists a unique solution (y(t), 2(¢),r(t,-)) € D
corresponding to A and f. Then, we can immediately get ) coincides with
(A, 00) from Theory 3.7 of [5]. O
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3. Optimal control problem for backward

In this section, we aim at deriving maximal principal for an infinite horizon
optimal control problem described by the following BSDDEs:
(3. 1)

y(T / Gls.ys), | (s, y(t)alde). (s). (5., v(t))ds

—|—/t // s,e)N(ds, de) /f )ds, t €[0,T],
y(s) = ¢(s), s € [=6,0).

Here, let U be a nonempty convex subset of R¥, we denote by U the set of all
Fi-adapted admissible control processes.
The objective is to maximize the following performance functional over U:

I0) = [ tsle), [ ol Opiatin), (6)r(s. ) vls))ds +1(3(0)

where [ : Q x [0,00) x K x La(E,K) x L*(€ x Ry, B(E),m;K) x U — K is
adapted with respect to {F}:>0 and satisfies for each v(-) € U,

EUOO (s, 9(s), s ¢(s, )y (t)a(dt), 2(s), (s, ), v(s))|ds | < oo.
0

s—0
Next, we give the following assumptions:
(H3.1) G is continuously differentiable in (y, ys, z, 7, v). The partial derivatives
Gy,Gys, G2, Gy, Gy and G with respect to (y, ys, 2,7, v) are uniformly bounded.
(H3.2) [ and + are differentiable with respect to (y, ys, 2,7, v) and y respectively
for each v(-) € U, and all the derivatives are bounded.

Remark 3.1. If v(-) is admissible control and our above assumptions hold, then
by Theorem 2.2, (3.1) has a unique solution (y*(-), 2¥(:),r"(-,-)) € D.

Now, let (u(:),y*(:),2*(-),7*(:,-)) be an optimal solution of our problem.
Take an arbitrary v(-) in U, then, for each 0 < p < 1, let v°(-) = u(-) + p(v(:) —
u(-)) € U. Let (y°(-), 2°(-),r" (-, )) be the state processes of system (3.1) with
v”(-).

To derive a first-order necessary condition in terms of small p, we let (g(-),
Z(+), 7(-,-)) be the solution of the following BSDDEs which called variational
equations:

(3.2)
dy(s) = —[Gy(s)y(s) + G (s)ys(s) Z(s) + GJ(s, )i (s, ")

+ GY(s)
+GY(s)(s)]ds+2(s )dW(s)+/gf(s,~)N(ds,de), se0,7],

g(s) =0, se [_65 0)7

where G¥(s) = Gi(s,y"(s),y5(s), 2%(s),r"(s,),u(s)), k = y,ys, z,7(-), v, and
(s) = vP(s) — u(s).
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We assume:

B[ [ (565 + 185, (935(5)| + H6)2(5)
(H3.3) 0
IR (s, €)] + [5(s)1%(s)]) ds} < .

Lemma 3.1. Assume (H3.1)~(H3.3) hold. Then we have
T
lim E[ sup |7°(s)?ds] = 0, lim ]E[/ |2°(s)|ds] = 0.
p—)O 0<s<T p—>0 0

Since u(-) is an optimal control of our problem, the following inequality holds
for any v(-) € U and the corresponding v”(-):

p I () = I (u(-))] < 0.
According to the above lemma, we have following result.

Lemma 3.2. If (H3.1)~(H3.3) hold, for all v(-) € U, we have

B O)F0E [ G I ()4
+7(8)lE (s, e)+0(s)ly(s)) ds| < 0.

Remark 3.2. Using Lemma 2.1, Lebesgue dominated convergence theorem and
Taylor expansion, it is very simple to prove Lemmas 3.1 and 3.2.

Next, we introduce the dual equation of the variational equation (3.2) as
follows:
(3.3)

dp(s)= (E™

s a(ds)
/ (GZ6(t)p(t)—l;ja(t))¢(t,S)X[O,TJ(t)dt] ds }ds

+ [y (s) + Gy(s)p(s)lds + [=1Z(s) + G2 (s)p(s)|dW (s

~

+ / =12 (s,¢) + G%(s, €)p(s)| N (ds, de), s € [0,T],
£
p(0)= —v,(y"(0)).

The Hamiltonian function H : [0, 00) is defined by

H(Sayvytsvzar(');vyp) = l(57y7y5az7r(')7v) - <G(57yayéazar(’)av)ap>'
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The associated adjoint equation as
(3.4)

dp(s)= { — H,(s,9(s),ys(s), 2(s),7(s, ), u(s), p(s))

E]:

/ £),95(t), (), 7(t, ), u(t), p(E) B(t, 5)x(o.1 (1)t

o,

(5,9(5),95(5), 2(5), (5, ), u(s), p(s))dW (3)
/ H, (5,5(5), u5(5), 2(5), (s, ), u(s), p(s)) N (ds, de), s € [0,T),
p(0)= —,(y(0)),

where O‘E;is) is the Radon-Nikodym derivative.

Remark 3.3. For a given admissible control v(-), (3.3) and (3.4) are ASDEs
and admit a unique solution under conditions (H3.1) and (H3.2) by [2].

Now we can give the first main result of this paper.

Theorem 3.1 (Necessary conditions of optimality). Let (H2.1)~(H2.4) and
(H3.1)~(H3.3) hold. Suppose that u(-) is an optimal control of our problem
and (y*(-), 2%(-),r*(-,-)) is the corresponding optimal state trajectory. We also
assume the following holds:

(H3.4) The following growth condition holds:

T
E / POF2(1) + G (s)3(s))ds | <
0

Then we have
(3.5) (Hy(s,y(s),ys(s), 2(s), (s, ), u(s), p(s)), v — u(s)) <0
for any v € U, a.e., where p(-) is the solution of the adjoint equation (3.4).
Proof. Applying It6 formula to (p(s), y(s)), we have
Ep(T)y(T') — p(0)5(0)

T T
_E / p(3)[=G ()4a(s) — G (5)0(s))ds — E / 3312 (s)ds

+ E/OT <g(s),1Efs

T T
—E/O z(s)l?(s)ds—E/O 7(s)l (s, e)ds.

s+6 o(ds)
[ @m0t om0 gy
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Since the following results hold:

T
E / (p(s), G2, ()43 (5)) ds

r+6
/ G (s)p(s )¢(Sa7’)X[0,T](5)dS] ,@<r>>a<dr>

[ |7 enwmot v (t)dt] “Sf),g(s>> s
and

E [ 1 (9s(s)ds — £ / e

let T — oo, by assumption (H3.4), we have

7 (4(0))(0)
- -E / [p(5)G2(5)3(s))ds — E / G(s)I2(s)ds — E / G ()1 ()ds
—E/O z(s)zg(s)ds—E/o F(5)1% (s, ) ds.

By Lemma 3.2, we have

2 [T B —ps)GE s <0,
0

s+9 a(ds
/ Ly (®)o(t, s)x[0,1] (t)dt] 7s 0 U(s))ds,

~—

E UOO<HD(S7y(8)7ya(8),2(8)7r(87 ) u(s),p(s)), 0(s))ds| <0.
0

Consulting the proof of Theorem 1.5 in [14], for v € U, we get (3.5) to be true
a.s. The left side of (3.5) is equivalent to

(Hoy(s,y(s5),ys(s), 2(s),r(s, ), uls), p(s)), u(s))
- I&a5[(<Hv(S, y(s)v y&(s)a 7‘(5, ')a u(s),p(s)), U>. O

Theorem 3.2 (Sufficient conditions of optimality). Let (H2.1)~(H2.4) and
(H3.1)~(H3.4) hold. Suppose that for u(-) € U, (y(-),z(-),r(-,-)) is the corre-
sponding optimal state trajectory and p(-) is the corresponding solution of the
adjoint equation (3.4). If (3.5) holds, H(s,y(s),ys(s), z(s),r(s,-),u(s),p(s)) is
a concave function of (y,ys,z,7(-),v) and 7 is concave in y, then u(-) is an
optimal control for our problem.

Proof. Choose av(-) € U and let (y(-), z(:), (-, -)) be the corresponding solution
of (3.1). Let

= ]EL/O‘X’{Z(SJJ(SLy(s(s),z(s),r(s7 Y, u(s))
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—1(s,4°(8),y5(s), 2(s), (s, "), U(s))}ds],
I = [y (y(0)) — 7y (" (0))]-

To simplify, we use notations

O(s) = (y(s), ys(s), 2(5), 7(5,)), 0”(5) = (4"(), Y4 (), 2(s), (s, )).
We want to prove that
(3.6) J() = J@() = I + I > 0.

Since 7y is concave on y, Iz > 7, (y(0)) " (y(0) —y"(0)) = —(p(0)) " (y(0) —y*(0)).
Applying Itd formula to (p(-),y(-) — y¥(-)) and taking expectation, we get

I > = (p(0)) T (y(0) —y°(0))
= —E/O (p(s),G(5,0(s),ul(s)) — G(s,0%(s), v(s)))ds

~E [ (uls) — (00 {1, (5. 005).u(5). p(5)
(3.7)

E7
* ds

s+o a(ds
/ f%@@@mwmmww@mmuw]<dﬁws
—Eéw@@»—fw»Hxa@wLM$mwm
a IE/OOO<T(57 ) - rv(s’ ')a Hr(sa @(s),u(s),p(s))>.

On the other hand, I; can be rewritten as

B =B [ T(5.00) uls). pls)) — H(5. 07(5),0(5). p(5))
(3.8) 0

+ E/Ooo@(s% G(s,0(s),u(s)) — G(s,0"(s),v(s)))ds.
From (3.7) and (3.8), we obtain

J(u()) = J(v(")
= Il + Ig

> B [ H(5. 009, u(s). (o) ~ H(s,©°(5)0(5).p(5)
39 B [ () -5 {1,600 u(e).0()

+E”

s+6 a(as
/ H,y, (t,0(s), u(t), p(t))$(t, )X[o.7] (t)dt] EZ )}>ds

- E/w<2(8) —2"(s), H.(s,0(s), u(s), p(s)))ds
0
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B E/OO<T(S7 ) - TU(& ')7 H’r‘(87 @(s),u(s),p(s)))ds.
0

Noting that

310 E [ (45 -1

5+0
Es l/ Hya (t, @(S), u(t),p(t))qb(t’ S)X[O,T] (t)dt‘| agis) >d3

= ]E/OO (ys(s) =5 (s), Hy; (5, ©(s), uls), p(s))) ds,
0
and O(s) — H(s,0(s),u(s),p(s)) is a concave, we have
@11 J(u() = J(v() Z]E[/OOO<HU(S7@(8),U(S),p(S)),ﬁ(S»dS] =0.

It follows that u(-) is an optimal control. O

4. Linear-quadratic problem

In this section, we will study a linear-quadratic problem of BSDDEs. Ap-
plying the theoretical result in Section 3, we aim to give optimal control. We
consider the following linear-quadratic BSDDEs:

T
y(T) —y(t) = — /t [A(s)y(s) + B(s)y(s — 6) + C(s)z(s)

D(s)r(s, ) + G(s)v(s)]ds + /t z(s)dW (s)

+
T -
Jr/t/gr(s,e)N(ds,de), t € [0,T],
[—4,0)

y(s) = ¢(s), s €[=4,0),

where A(s), B(s), C(s), D(s) and G(s) are deterministic functions.
The object is to maximize the following functional over U,

J0()) = —5E [ I R(s)v%s)ds} T Ky(0)

for some constant K and nonnegative function R(s) defined on [0,00]. By
Theorem 3.1, the Hamiltonian function of our optimization problem becomes

H(t,,us2,7(),0,9) o= — S RV() — [A@D(0) + B(O)y(t o)

+C(1)=(t) + D(t)r(t, ) + G)v(t)]p(),
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and the adjoint equation becomes

dp(t) = {A(t)p(t) + BH)E"[p(t + 6)] hdt

(4.2) + O / D()p(t) N (dt, de), t € [0,T],
p(0)=K,p(t) =0, T<t<T+34.
It is obvious that when u(t) = R~ (t)G(t)p(t), we have

(Ho(s,(s),95(5), 2(8), (s, ), u(s), p(s)), uls))

- gleagfwv(s, y(s),ys(s),7(s,-),u(s),p(s)),v).

We substitute u(t) = R~ (¢)G(t)p(t) into (4.1) and consider following equation:

dy(t) = — [A(t)y(t) + B()y(t — 8) + C(t)z(t) + D(t)r(t,-)
+ GO R ()p(t)]ds + =(t)dW (1)

+/r(t,e)N(dt,de), t € 0,7,

&

(4.3) dp(t) = {A(t)p(t) + B(t )EE[ (t+d)]}tdt

+Cp( / D()p(t) N (dt, de), t < [0,T],

y(t) = @(t)a te [767 O)v
p(0) = K,p(t) =0, T<t<T+3é.

Remark 4.1. If (4.3) admits a unique solution, then we get an explicit expression
of optimal control u(-).
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