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Abstract. In this paper, we show the existence of solution of the neutral

stochastic functional differential equations under non-Lipschitz condition,

a weakened linear growth condition and a contractive condition. Further-
more, in order to obtain the existence of solution to the equation we used

the Picard sequence.
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1. Introduction

Together with the development of science systems, usually using the ordinary
differential equations to describe the trajectory of systems with phenomenon of
time delay is have difference in real measured trajectory. Moreover, we can not
ignore the effect of the science systems with time delay.

So, we need an another class of stochastic equations depending on past and
present values but that involves derivatives with delays as well as the function
itself. Such equations historically have been referred to as neutral stochastic
functional differential equations, or neutral stochastic differential delay equations
(see, [2], [3], [4], [6], [8], [9]). Such equations are more difficult to motivate but
often arise in the study of two or more simple electrodynamics or oscillatory
systems with some interconnections between them.

For example, In studying the collision problem in electrodynamics, Diver [1]
considered the system of neutral type

ẋ(t) = f1(x(t), x(δ(t))) + f2(x(t), x(δ(t)))ẋ(δ(t)),
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where δ(t) ≤ t. Generally, a neutral functional differential equation has the form

d

dt
[x(t)−D(xt)] = f(xt, t).

Taking into account stochastic perturbations, we are led to a neutral stochastic
functional differential equation

d[x(t)−D(xt)] = f(xt, t)dt+ g(xt, t)dB(t) (1)

Neutral stochastic functional differential equations(NSDEs) are known to
model problems from several areas of science and engineering. For instance,
in 2007, Mao [8] published the stochastic differential equations and applications,
in 2010, Li and Fu [7] considered the stability analysis of stochastic functional
differential equations with infinite delay and its application to recurrent neural
networks, in 2013, Wei et al. [10] considered the existence and uniqueness of the
solution to following neutral stochastic functional differential equations with in-
finite delay. Also, Kim [5] considered the solution to following neutral stochastic
functional differential equations with infinite delay

d[x(t)−G(t, xt)] = f(t, xt)dt+ g(t, xt)dB(t), (2)

where xt = {x(t+ θ) : −∞ < θ ≤ 0}.
Motivated by [5], [10], one of the objectives of this paper is to get one proof

to existence theorem for given NSDEs. The other objective of this paper is to
estimate on how fast the Picard iterations xn(t) convergence the unique solution
x(t) of the neutral NSDEs.

2. Preliminary

Let | · | denote Euclidean norm in Rn. If A is a vector or a matrix, its trans-
pose is denoted by AT ; if A is a matrix, its trace norm is represented by |A| =√

trace(ATA). And BC((−∞, 0];Rd) denote the family of bounded continuous
Rd-value functions ϕ defined on (−∞, 0] with norm ‖ϕ‖ = sup−∞<θ≤0 |ϕ(θ)|.
M2((−∞, T ];Rd) denote the family of all Rd-valued measurable Ft-adapted pro-

cess ψ(t) = ψ(t, w), t ∈ (−∞, T ] such that E
∫ T
−∞ |ψ(t)|2dt <∞.

Let t0 be a positive constant and (Ω,F , P ), throughout this paper unless
otherwise specified, be a complete probability space with a filtration {Ft}t≥t0
satisfying the usual conditions (i.e. it is right continuous and Ft0 contains all
P -null sets).

Let B(t) is a m-dimensional Brownian motion defined on complete probability
space, that is B(t) = (B1(t), B2(t), ..., Bm(t))T .

For 0 ≤ t0 ≤ T <∞, let f : [t0, T ]×BC((−∞, 0];Rd)→ Rd and g : [t0, T ]×
BC((−∞, 0];Rd) → Rd×m are Borel measurable mapping and G : [t0, T ] ×
BC((−∞, 0];Rd)→ Rd be continuous mapping.

With all the above preparation, consider the following d-dimensional neutral
SFDEs:

d[x(t)−G(t, xt)] = f(t, xt)dt+ g(t, xt)dB(t), t0 ≤ t ≤ T, (3)
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where xt = {x(t + θ) : −∞ < θ ≤ 0} can be considered as a BC((−∞, 0];Rd)-
value stochastic process. The initial value of the system (3)

xt0 = ξ = {ξ(θ) : −∞ < θ ≤ 0} (4)

is an Ft0measurable, BC((−∞, 0];Rd)-value random variable such that ξ ∈
M2((−∞, 0];Rd).

To be more precise, we give the definition of the solution of the equation (3)
with initial data (4).

Definition 2.1. [10] Rd-value stochastic process x(t) defined on −∞ < t ≤ T is
called the solution of (3) with initial data (4), if x(t) has the following properties:
(i) x(t) is continuous and {x(t)}t0≤t≤T is Ft-adapted;
(ii) {f(t, xt)} ∈ L1([t0, T ];Rd) and {g(t, xt)} ∈ L2([t0, T ];Rd×m) ;
(iii) xt0 = ξ, for each t0 ≤ t ≤ T,

x(t) = ξ(0) +G(t, xt)−G(t0, ξ) +

∫ t

t0

f(s, xs)ds+

∫ t

t0

g(s, xs)dB(s) a.s. (5)

The x(t) is called as a unique solution, if any other solution x(t) is distinguishable
with x(t), that is

P{x(t) = x(t), for any −∞ < t ≤ T} = 1.

The following lemmas are known as special name for stochastic integrals which
was appear in [8] and will play an important role in next section.

Lemma 2.2. (Hölder’s inequality) [8] If 1
p + 1

q = 1 for any p, q > 1, f ∈ Lp, and

g ∈ Lq, then fg ∈ L1 and
∫ b
a
fg dx ≤ (

∫ b
a
|f |p dx)1/p(

∫ b
a
|g|q dx)1/q.

Lemma 2.3. (Gronwall’s inequality) [8] Let u(t) and b(t) be nonnegative con-

tinuous functions for t ≥ α, and let u(t) ≤ a+
∫ t
α
b(s)u(s)ds, t ≥ α, where a ≥ 0

is a constant. Then

u(t) ≤ a exp

(∫ t

α

b(s)ds

)
, t ≥ α.

Lemma 2.4. (Bihari’s inequality) [8] Let T ≥ 0 and u0 ≥ 0, let u(t) and b(t) be
continuous functions on [0, T ]. Let κ(·) : R+ → R+ is a concave nondecreasing

function such that κ(0) = 0, κ(u) > 0 for all u > 0. If u(t) ≤ a+
∫ t
α
b(s)κ(u(s))ds,

for all 0 ≤ t ≤ T. Then

u(t) ≤ G−1

(
G(u0) +

∫ T

t

v(s)ds

)
for all t ∈ [0, T ] such that G(u0) +

∫ T
t
v(s)ds ∈ Dom(G−1), where G(r) =∫ r

1
1
k(s)ds, r ≥ 0 and G−1 is the inverse function of G.
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Lemma 2.5. (Moment inequality) [8] If p ≥ 2, g ∈ M2([0, T ];Rd×m) such that

E
∫ T

0
|g(s)|p ds <∞, then

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

g(s) dB(s)

∣∣∣∣p) ≤ ( p3

2(p− 1)

) p
2

T
p−2
2 E

∫ T

0

|g(s)|p ds.

In order to attain the solution of equation (3) with initial data (4), we propose
the following assumptions:

(H1) (non-uniform Lipschitz condition) For any ϕ,ψ ∈ BC((−∞, 0];Rd) and
t ∈ [t0, T ], we assume that

|f(t, ϕ)− f(t, ψ)|2 ∨ |g(t, ϕ)− g(t, ψ)|2 ≤ κ(‖ϕ− ψ‖2),

where κ(·) : R+ → R+ is a concave continuous nondecreasing function
such that κ(0) = 0, κ(u) > 0 for all u > 0 and

∫
0+

1
k(u)du =∞.

(H2) (weakened linear growth condition) For any t ∈ [t0, T ], it follows that
f(t, 0), g(t, 0) ∈ L2 such that

|f(t, 0)|2 ∨ |g(t, 0)|2 ≤ K,

where K is a positive constant.

(H3) (contractive condition) Assuming that there exists a positive number
K0 such that 0 < K0 < 1 and for any ϕ,ψ ∈ BC((−∞, 0];Rd) and
t ∈ [t0, T ], it follows that

|G(t, ϕ)−G(t, ψ)| ≤ K0(‖ϕ− ψ‖).

3. Main results

In order to obtain the existence of solutions to neutral SFDEs, let x0
t0 = ξ

and x0(t) = ξ(0), for t0 ≤ t ≤ T. For each n = 1, 2, . . . , set xnt0 = ξ and define
the following Picard sequence

xn(t)− ξ(0)

= G(t, xn−1
t )−G(t0, x

n−1
t0 ) +

∫ t

t0

f(s, xn−1
s )ds+

∫ t

t0

g(s, xn−1
s )dB(s). (6)

Now we give the existence theorem to the solution of equation (3) with initial
data (4) by approximate solutions by means of Picard sequence.

Theorem 3.1. Assume that (H1)-(H3) hold. Then, there exists a unique so-
lution to the neutral SFDEs (3) with initial data (4). Moreover, the solution
belongs to M2((−∞, T ];Rd).

We prepare a lemma in order to prove this theorem.

Lemma 3.2. Let the assumption (H1) and (H3) hold. If x(t) is a solution of
equation (2.1) with initial data (2.2), then
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E
(

sup
−∞<t≤T

|x(s ∧ τn)|2
)

≤
(
c1(α+K)(T − t0) +

4

(1−
√
K0)(1−K0)

E‖ξ‖2
)

exp(c1β(T − t0)),

where α and β are positive constants, c1 = 6(T − t0 + 4)/(1−
√
K0)(1−K0). In

particular, x(t) belong to M2((−∞, T ];Rd).

Proof. For each number n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : ‖x(t)‖ ≥ n}.
Obviously, as n → ∞, τn ↑ T a.s. Let xn(t) = x(t ∧ τn), t ∈ (−∞, T ]. Then, for
t0 ≤ t ≤ T, xn(t) satisfy the following equation

xn(t) = G(t, xnt )−G(t0, x
n
t0) + Jn(t),

where

Jn(t) = ξ(0) +

∫ t

t0

f(s, xns )I[t0,τn](s) ds+

∫ t

t0

g(s, xns )I[t0,τn](s) dB(s).

Applying the elementary inequality (a+b)2 ≤ a2

α + b2

1−α when a, b > 0, 0 < α < 1,
we have

|xn(t)|2 ≤ 1

K0
|G(t, xnt )−G(t0, x

n
t0)|2 +

1

1−K0
|Jn(t)|2

≤
√
K0‖xnt ‖2 +

K0

1−
√
K0

‖ξ‖2 +
1

1−K0
|Jn(t)|2,

where condition (H3) has also been used. Taking the expectation on both sides,
one sees that

E
(

sup
t0<s≤t

|xn(s)|2
)

≤
√
K0E

(
sup

−∞<s≤t
|xn(s)|2

)
+

K0

1−
√
K0

E‖ξ‖2 +
1

1−K0
E
(

sup
t0≤s≤t

|Jn(s)|2
)
.

Noting that sup−∞<s≤t |xn(s)|2 ≤ ‖ξ‖2 + supt0≤s≤t |x
n(s)|2, we get

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤
√
K0E

(
sup

−∞<s≤t
|xn(s)|2

)
+

K0

1−
√
K0

E‖ξ‖2 +
1

1−K0
E
(

sup
t0≤s≤t

|Jn(s)|2
)
.

Consequently

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤ 1

(1−
√
K0)2

E‖ξ‖2 +
1

(1−
√
K0)(1−K0)

E
(

sup
t0≤s≤t

|Jn(s)|2
)
. (7)
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On the other hand, by the elementary inequality (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2,
one can show that

|Jn(s)|2 ≤ 3

[
E‖ξ‖2 +

∣∣∣∣∫ t

t0

|f(s, xns )|2ds
∣∣∣∣2 +

∣∣∣∣∫ s

t0

g(r, xnr ) dB(r)

∣∣∣∣2].
By Hölder’s inequality and Lemma (2.5), one can show that

E
(

sup
t0≤s≤t

|Jn(s)|2
)

≤ 3

[
E‖ξ‖2 + (T − t0)

∫ t

t0

E|f(s, xns )|2ds+ 4

∫ s

t0

E|g(s, xns )|2 ds
]
.

By the condition (H2), one can show that

E
(

sup
t0≤s≤t

|Jn(s)|2
)
≤ 3E‖ξ‖2 + 6(T − t0 + 4)

∫ t

t0

E(κ(‖xns ‖2) +K)ds.

Since κ(·) is concave and κ(0) = 0, we can find a positive constants α and β
such that κ(u) ≤ α+ βu for all u ≥ 0. Therefore, we have

E
(

sup
t0≤s≤t

|Jn(s)|2
)

≤ 3E‖ξ‖2 + 6(T − t0 + 4)(α+K)(T − t0) + 6β(T − t0 + 4)

∫ t

t0

E‖xns ‖2ds.

Substituting this into (7) yields that

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤ c1(α+K)(T − t0) +
4

(1−
√
K0)(1−K0)

E‖ξ‖2 + c1β

∫ t

t0

E‖xns ‖2ds,

where c1 = 6(T − t0 + 4)/(1−
√
K0)(1−K0). Therefore, we have

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤ c1(α+K)(T − t0) +
4

(1−
√
K0)(1−K0)

E‖ξ‖2 (8)

+c1β

∫ t

t0

sup
−∞<r≤s

E|xn(r)|2dr.

The Gronwall’s inequality then yields that

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤
(
c1(α+K)(T − t0) +

4

(1−
√
K0)(1−K0)

E‖ξ‖2
)

exp(c1β(T − t0)).
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For all n = 0, 1, 2, . . . , we deduce that

E
(

sup
−∞<s≤t

|x(s ∧ τn)|2
)

≤
(
c1(α+K)(T − t0) +

4

(1−
√
K0)(1−K0)

E‖ξ‖2
)

exp(c1β(T − t0)).

Consequently the required inequality follows by letting n→∞. �

Proof of Theorem 3.1. To check the uniqueness, let x(t) and x(t) be any two
solutions of (3) with initial data (4). By Lemma 3.2, x(t), x(t) ∈ M2((−∞,
T ];Rd). Note that

x(t)− x(t) = G(t, xt)−G(t, xt) + J(t),

where J(t) =
∫ t
t0

[f(s, xs) − f(s, xs)]ds +
∫ t
t0

[g(s, xs) − g(s, xs)]dB(s). One then
gets

|x(t)− x(t)|2 ≤ 1

K0
|G(t, xt)−G(t, xt)|2 +

1

1−K0
|J(t)|2,

where 0 < K0 < 1. We derive that

|x(t)− x(t)|2 ≤ K0‖xt − xt‖2 +
1

1−K0
|J(s)|2.

Therefore

E
(

sup
t0≤s≤t

|x(s)− x(s)|2
)

≤ K0E
(

supt0≤s≤t |x(s)− x(s)|2
)

+ 1
(1−K0)E

(
supt0≤s≤t |J(s)|2

)
.

Consequently

E
(

sup
t0≤s≤t

|x(t)− x(t)|2
)
≤ 1

(1−K0)2
E
(

sup
t0≤s≤t

|J(s)|2
)
.

On the other hand, one can show that

E
(

sup
t0≤s≤t

|J(s)|2
)

≤ 2

[
(T − t0)E

∫ t

t0

|f(s, xs)− f(s, xs)|2ds+ 4E

∫ t

t0

|g(s, xs)− g(s, xs)|2 ds

]
≤ 2(T − t0 + 4)

∫ t

t0

Eκ(‖xs − xs‖2) ds.

For any ε > 0, by the Jensen Inequality of the continuous function κ, this yields
that

E
(

sup
t0≤s≤t

|J(s)|2
)
≤ ε+ 2(T − t0 + 4)

∫ t

t0

κ(E sup
t0<r≤s

|x(r)− x(r)|2) ds.
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By the Bihari’s inequality, this yields that for sufficiently small ε > 0

E
(

sup
t0≤s≤t

|J(s)|2
)
≤ G−1(G(ε) + 2(T − t0 + 4)(T − t0)),

where G(r) =
∫ r

0
1

κ(u) du on r > 0 and G−1(·) is the inverse function of G(·). By

assumption
∫

0+
1

κ(u) du =∞ and the definition of κ(·) on see that limε↓0G(ε) =

∞ and then

lim
ε↓0

G−1(G(ε) + 2(T − t0 + 4)(T − t0)) = 0.

Therefore, by letting ε→ 0, we have E supt0≤s≤t |J(s)|2 = 0. This implies that

E
(

sup
t0<s≤t

|x(t)− x(t)|2
)

= 0.

Hence, we get x(t) = x(t) for t0 ≤ t ≤ T a.s. The uniqueness has been proved.
Now we check the existence of the solution using the Picard sequence (6).

Obviously, from the Picard iterations, we have x0(t) ∈ M2([t0, T ] : Rd). More-
over, one can show the boundedness of the sequence {xn(t), n ≥ 0} that xn(t) ∈
M2((−∞, T ] : Rd), in fact

xn(t) = G(t, xn−1
t )−G(t0, x

n−1
t0 ) + Jn−1(t),

where

Jn−1(t) = ξ(0) +

∫ t

t0

f(s, xn−1
s )ds+

∫ t

t0

g(s, xn−1
s )dB(s).

Applying the elementary inequality (a+b)2 ≤ a2

α + b2

1−α when a, b > 0, 0 < α < 1,
we have

|xn(t)|2 ≤ 1

K0
|G(t, xn−1

t )−G(t0, ξ)|2 +
1

1−K0
|Jn−1(t)|2

≤
√
K0‖xn−1

t ‖2 +
K0

1−
√
K0

‖ξ‖2 +
1

1−K0
|Jn−1(t)|2,

where condition (H3) has also been used. Taking the expectation on both sides,
one sees that

E
(

sup
t0≤s≤t

|xn(s)|2
)
−
√
K0E sup

t0≤s≤t
|xn−1(s)|2

≤ K0

1−
√
K0

E‖ξ‖2 +
1

1−K0
E
(

sup
t0≤s≤t

|Jn−1(s)|2
)
. (9)

On the other hand, by elementary inequality, Hölder’s inequality and moment
inequality, one can show that

E
(

sup
t0≤s≤t

|Jn−1(s)|2
)

≤ 3

[
E‖ξ‖2 + (T − t0)E

∫ t

t0

|f(s, xn−1
s )|2ds+ 4E

∫ t

t0

|g(s, xn−1
s )|2 ds

]
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≤ 3E‖ξ‖2 + 6(T − t0 + 4)E

∫ t

t0

(κ(‖xn−1
s ‖2) +K) ds.

Since κ(·) is concave and κ(0) = 0, we can find a positive constants α and β
such that κ(u) ≤ α+ βu for all u ≥ 0. Therefore, we have

E
(

sup
t0≤s≤t

|Jn−1(s)|2
)
≤ 3E‖ξ‖2 + γ1 + 6β(T − t0 + 4)

∫ t

t0

E‖xn−1
s ‖2 ds,

where γ1 = 6(T − t0 + 4)(T − t0)(α+K). Substituting this into (9) yields that

E sup
t0≤s≤t

|xn(s)|2

≤ c2 +
√
K0E sup

t0≤s≤t
|xn−1(s)|2 +

6β(T − t0 + 4)

1−K0

∫ t

t0

E sup
t0≤r≤s

|xn−1(r)|2dr,

where c2 = γ1
1−K0

+ 4+6β(T−t0+4)(T−t0)

(1−
√
K0)(1−K0)

E‖ξ‖2. It also follows note that for any

k ≥ 1,

max
1≤n≤k

E
(

sup |xn−1(u)|2
)

= max
{
E‖ξ‖2, E(sup |x1(u)|2), . . . , E(sup |xk−1(u)|2)

}
≤ max

{
E‖ξ‖2, E(sup |x1(u)|2), . . . , E(sup |xk−1(u)|2), E(sup |xk(u)|2)

}
≤ E‖ξ‖2 + max

1≤n≤k
E(sup |xn(u)|2).

Therefore, one can derive that

max
1≤n≤k

E
(

sup
t0≤s≤t

|xn(s)|2
)

≤ c3 +
6β(T − t0 + 4)

(1−
√
K0)(1−K0)

∫ t

t0

max
1≤n≤k

E
(

sup
t0≤r≤s

|xn(r)|2
)
dr,

where c3 = c2
1−
√
K0

+ 1+6β(T−t0+4)(T−t0)

(1−
√
K0)(1−K0)

E‖ξ‖2. By Gronwall’s inequality, we

have

max
1≤n≤k

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤ c3 exp

(6β(T − t0 + 4)(T − t0)

(1−
√
K0)(1−K0)

)
.

Since k is arbitrary, for all n = 0, 1, 2, . . . , we deduce that

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤ c3 exp

(6β(T − t0 + 4)(T − t0)

(1−
√
K0)(1−K0)

)
,

which shows the boundedness of the sequence {xn(t), n ≥ 0}.
Next, we check that the sequence {xn(t)} is Cauchy sequence. For all n ≥ 0

and t0 ≤ t ≤ T, we have

xn+1(t)− xn(t) = G(t, xnt )−G(t, xn−1
t )
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+

∫ t

t0

[f(s, xns )− f(s, xn−1
s )]ds+

∫ t

t0

[g(s, xns )− g(s, xn−1
s )]dB(s).

Using an elementary inequality (u+ v)2 ≤ 1
αu

2 + 1
1−αv

2 and the condition (H3),
we derive that

E
(

sup
t0<s≤t

|xn+1(s)− xn(s)|2
)
≤ K0E

(
sup

t0<s≤t
|xn(s)− xn−1(s)|2

)
+

2(T − t0 + 4)

1−K0
E

∫ t

t0

κ
(

sup
t0≤r≤s

|xn(r)− xn−1(r)|2
)
ds.

This yields that

max
1≤n≤k

E
(

sup
t0<s≤t

|xn+1(s)− xn(s)|2
)

≤ 2(T − t0 + 4)

(1−K0)2

∫ t

t0

κ
(

max
1≤n≤k

E
(

sup
t0≤u≤s

|xn+1(u)− xn(u)|2
))

ds.

Let Z(t) = lim supn,m→∞max1≤n≤k E
(

supt0≤s≤t |x
n+1(s)− xn(s)|2

)
, we get

Z(t) ≤ ε+
2(T − t0 + 4)

(1−K0)2

∫ t

t0

κ(Z(s)) ds.

By Bihari’s inequality, we get Z(t) = 0. This shows the sequence {xn(t), n ≥ 0}
is a Cauchy sequence in L2. Hence, as n → ∞, xn(t) → x(t), that is E|xn(t) −
x(t)|2 → 0. Therefore, we obtain that x(t) ∈ M2((−∞, T ];Rd). Now to show
that x(t) satisfy (5).

E

∣∣∣∣∫ t

t0

[f(s, xns )− f(s, xs)]ds+

∫ t

t0

[g(s, xns )− g(s, xs)] dB(s)

∣∣∣∣2
≤ 2

[
(T − t0)E

∫ t

t0

|f(s, xns )− f(s, xs)|2ds+ 4E

∫ t

t0

|g(s, xns )− g(s, xs)|2 ds

]
≤ 2(T − t0 + 4)

∫ t

t0

κ
(
E
(

sup
t0≤u≤s

|xn(u)− x(u)|2
))

ds.

Noting that sequence xn(t) is uniformly converge on (−∞, T ], it means that

E
(

sup
t0≤u≤s

|xn(u)− x(u)|2
)
→ 0

as n → ∞, further κ(E(supt0≤u≤s |x
n(u) − x(u)|2)) → 0 as n → ∞. Hence,

taking limits on both sides in the Picard sequence, we obtain that

x(t) = ξ(0) +G(t, xt)−G(t0, xt0) +

∫ t

t0

f(s, xs)ds+

∫ t

t0

g(s, xs)dB(s).

The above expression demonstrates that x(t) is a solution of equation (3) satis-
fying the initial condition (4). So far, the existence of theorem is complete. �
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Remark 3.1. In the proof of Theorem 3.1 we have shown that the Picard
iterations xn(t) converge to the unique solution x(t) of equation (3). In the
next study, we should gives an estimate on the difference between xn(t) and x(t)
under some special condition, and it clearly shows that one can use the Picard
iteration procedure to obtain the approximate solutions to equations (3).
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