• Title/Summary/Keyword: linear discrete-time system

Search Result 298, Processing Time 0.025 seconds

A note on an adaptive control to certain discrete-time linear system with 2 ordered performance function

  • Munakata, Tsunehiro;Tojo, Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.862-865
    • /
    • 1989
  • The authors, in this paper, investigate the degree of tracking (i.e. the weak points of Samson) to this discrete-time adaptive control system. A matter of course, the results of tracking is improved by using g given in 2.2, compared with the results of Samson. But it is a neck point that the calculation on g is very complex. So by giving the value of g suitably, it is shown that the result superior to one of Samson are taken.

  • PDF

A Design Method of Discrete Time Learning Control System (이산시간 학습제어 시스템의 설계법)

  • 최순철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.5
    • /
    • pp.422-428
    • /
    • 1988
  • An iterative learning control system is a control system which makes system outputs follow desired outputs by iterating its trials over a finite time interval. In a discrete time system, we proposed one method in which present control inputs can be obtained by a linear combination of the input sequence and time-shifted error sequence at previous trial. In contrast with a continous time learning control system which needs differential opreration of an error signal, the time shift operation of the error sequence is simpler in a computer control system and its effectiveness is shown by a simulation.

  • PDF

Fuzzy Output-Feedback Controller Design for PEMFC: Discrete-time Nonlinear Interconnected Systems with Common Inputs Approach (고분자 전해질 연료전지 시스템의 퍼지 출력 궤환 제어기 설계: 공통 입력을 갖는 이산시간 비선형 상호결합 시스템 접근)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.851-856
    • /
    • 2011
  • In this paper, the fuzzy output-feedback controller is addressed for a discrete-time nonlinear interconnected systems with common input. The nonlinear interconnected system is represented by a T-S (Takagi-Sugeno) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy output-feedback controller is designed with common input. The stability condition of the closed-loop system is represented to the LMI (Linear Matrix Inequality) form. PEMFC model is given to show the verification of the controller discussed throughout the paper.

Decentralized Stabilization of a Class of Large Scale Discrete-time Systems Subject to System Parameter Uncertainties (시스템파라미터가 불확실한 대규모 선형 이산시간 시스템의 비집중 안정화에 관한 연구)

  • Lyou, Joon;Yoon, Myung-Joong;Chung, Myung-Jin;Bien, Zeungnam
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.3
    • /
    • pp.89-96
    • /
    • 1985
  • This paper presents a decentralized adaptive scheme to stabilize a class of large-scale discrete-time linear systems subject to system parameter uncertainties. The scheme combines an adaptive nonlinear feedback control for compensating some effects by unknown system parameters and the exact model-based linear feedback control for overriding the unfavorable effects by interconnections. A condition of stability is derived, under which the overall adaptive system is assured to be globally stable. Also, a numerical example is provided to illustrate the feasibility of the scheme.

  • PDF

Block-decomposition of a Linear Discrete Large-scale systems Via the Matrix Sign Function (행렬부호 함수에 의한 선형 이산치 대단위 계토의 블럭-분해)

  • 천희영;박귀태;권성하;이창훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.11
    • /
    • pp.511-518
    • /
    • 1986
  • An algorithm for block-decomposition of a linear, time-invariant, discrete large-scale systems is presented, based upon the matrix sign function on Z-plane. The block-decomposition is performed by defining a reference circle, a circular stripe and projection operators. Simulation study shows that the presented algorithm is very useful for multivariable control system's analysis and design.

  • PDF

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

Design of an iterative learning controller for a class of linear dynamic systems with time-delay (시간 지연이 있는 선형 시스템에 대한 반복 학습 제어기의 설계)

  • Park, Kwang-Hyun;Bien, Zeung-Nam;Hwang, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.295-300
    • /
    • 1998
  • In this paper, we point out the possibility of the divergence of control input caused by the estimation error of delay-time when general iterative learning algorithms are applied to a class of linear dynamic systems with time-delay in which delay-time is not exactly measurable, and then propose a new type of iterative learning algorithm in order to solve this problem. To resolve the uncertainty of delay-time, we propose an algorithm using holding mechanism which has been used in digital control system and/or discrete-time control system. The control input is held as constant value during the time interval of which size is that of the delay-time uncertainty. The output of the system tracks a given desired trajectory at discrete points which are spaced auording to the size of uncertainty of delay-time with the robust property for estimation error of delay-time. Several numerical examples are given to illustrate the effeciency of the proposed algorithm.

  • PDF

STABILITY AND CONSTRAINED CONTROLLABILITY OF LINEAR CONTROL SYSTEMS IN BANACH SPACES

  • Phat, Vu-Ngoc;Park, Jong-Yeoul;Jung, Il-Hyo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.593-611
    • /
    • 2000
  • For linear time-varying control systems with constrained control described by both differential and discrete-time equations in Banach spaces was give necessary and sufficient conditions for exact global null-controllability. We then show that for such systems, complete stabilizability implies exact null-controllability.

  • PDF

Low Complexity Discrete Hartley Transform Precoded OFDM System over Frequency-Selective Fading Channel

  • Ouyang, Xing;Jin, Jiyu;Jin, Guiyue;Li, Peng
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.32-42
    • /
    • 2015
  • Orthogonal frequency-division multiplexing (OFDM) suffers from spectral nulls of frequency-selective fading channels. Linear precoded (LP-) OFDM is an effective method that guarantees symbol detectability by spreading the frequency-domain symbols over the whole spectrum. This paper proposes a computationally efficient and low-cost implementation for discrete Hartley transform (DHT) precoded OFDM systems. Compared to conventional DHT-OFDM systems, at the transmitter, both the DHT and the inverse discrete Fourier transform are replaced by a one-level butterfly structure that involves only one addition per symbol to generate the time-domain DHT-OFDM signal. At the receiver, only the DHT is required to recover the distorted signal with a single-tap equalizer in contrast to both the DHT and the DFT in the conventional DHT-OFDM. Theoretical analysis of DHT-OFDM with linear equalizers is presented and confirmed by numerical simulation. It is shown that the proposed DHT-OFDM system achieves similar performance when compared to other LP-OFDMs but exhibits a lower implementation complexity and peak-to-average power ratio.

A heuristic search on noninferior solutions to the Halkin-typed linear quantized optimal control problem with two performance functions

  • Munakata, Tsunehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.772-776
    • /
    • 1988
  • In quantized control systems, the control values can take only given discrete (e.g. integer) values. In case of dealing with the control problem on the discrete-time, final-stage fixed, quantized control systems with multidimensional performance functions, the first thing, new definition on noninferior solutions in these systems is necessary because of their discreteness in state variables, and the efficient search for those solutions at final-stage is unavoidable for seeking their discrete-time optimal controls to these systems. In this paper, to the quantized control problem given by the formulation of Halkin-typed linear control systems with two performance functions, a new definition on noninferior solutions of this system control problem and a heuristic effective search on these noninferior solutions are stated. By use of these concepts, two definitions on noninferior solutions and the algorithm consisted of 8 steps and attained by geometric approaches are given. And a numerical example using the present algorithm is shown.

  • PDF