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Abstract

An algorithm for block-decomposition of a linear, time-invariant, discrete large-scale systems

is presented, based upon the matrix sign function on Z-plane. The block-decomposition is per-

formed by defining a reference circle, a circular stripe and projection operators.
Simulation study shows that the presented algorithm is very useful for multivariable control

system’s analysis and design.

1. Introduction

For a realistic analysis and design of linear
discrete -time large-scale systems which involve
interacting dynamic phenomena of widely
different modes, the large-scale system is often

block—decomposed into two basic structures,

the parallel structure and the cascade
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structure. The two Dbasic structures can
be obtained by the block-

diangonalization and block-triangularization

performing

of the state matrix of a dynamic equation.
In the case of discrete-time systems, results
concerning the use of block-diagonalization
were reported by Phillips’ and Mahmoud
et al.?

Though block-diagonalization techniques
the major advantage of not having to solve
the eigenvalue-eigenvector problem -which
de-

composition technique® —they nevertheless re-

is necessary, for example, in modal



quire the solutions of certain algebraic Riccati
and Lyapunov type equation that satisfy a
necessary and sufficient condition® Since these
equations are generally nonlinear, recursive
algorithms for solving them are highly desi-

rable”

The aim of this paper is to develop an al-
ternative block-decomposition algorithm of
a discrete-time large scale system which uses
the definition of a reference circle, a circular
stripe and a projection operators via the ma-
trix sign functions-1

This paper is organized as follows. In ch-
apter 2, we review the matrix sign function
and associated matrix sign algorithm. In ch-
apter 3, we proposed two block -decomposition
and multi block-decomposition algorithm ba-
sed on the nature of the matrix sign function
and generalized matrix sign function in Z-plane.
An illustrative example is presented in chaper
4 and conclusions are summarized in chapter

5.
2. The matrix sign function in Z-plane

block—

decomposition of a linear discrete large-scale

To develop methods for the
system, we present some definitions of the

matrix sign function in Z-plane.

Definition 2.1
The sign function of a complex variable A
with | Al# 1 in Z -plane is defined by

A‘,1>:‘+1 it 1A1>1 2.1

‘“"’”(Xﬁ, —1if A <1

From Definition 2.1 we observe that the si-
gn function is a nonlinear function which maps
the outside and inside unit circle of a Z-plane
into +1 and -1, respectively. The extension

of the sign function to the matrix sign fu-
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nction can be stated as follows.
Let M be the modal matrix of a square ma-

trix A{nxn) and

J=WAM=block diag[J., J_] (2.2a)

where M and its inverse W are defined as

M, i M M
M&[M, i M é{} M é{}
[M, 1 M,] v v M
M,

M. & - (
. [MJ 2 %)

Wi, Ww], WA W, | Wy,

M‘Q\NQ)W—‘JQ[ ------------
- VVE' WTZ] W’Zt \A'/vZé[ Wer ‘ \NVZZ:I
(2. 2¢)

and J,€ R™m*™ and J-ER™ ™ with n,-- n,= n, are
the collections of Jordan blocks associated
with the specturm o(A) CZ* and o(A)CZ,
respectively, where Z* and Z are the outside
and inside unit circle of the Z-plane, re-

spectively. Then

sign (A) =M[sign{J,) ®sign(J_) W

=M1, & (—L,,) |W (2.3)

The formal definition of the matrix sign fu-
nction in Z-plane can be defined by using

the Riesz projector® as follows:

Definition 2.2

The matrix sign function of a square matrix
A€ R™"with the eigenvalue spectrum ¢(A)C
7Z°\UZ", is defined by

sign{A) éZSign* (A) —1,=1,--2sign™ (A)
(2.4)

or

sign“(A) 2 ~[1.+ sign (A) ] (2.5a)

sign™ (A) 2 2 {1,—sign(A)] =sign® (A) — sign(A)

PO et DO | p

=[,—sign™ (A) (2.5b)

To compute sign{A), Roberts proposed an

efficient recursive algorithm. This algorithm

(512)
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. 9)
is as follows:

sign(A) 2S (k+1) =asS (k) +8:S7 k),

S(0)=A (2.6)
where

ax= IS R /IS K-S (k) |

Br=IIS & I/1IS (k) i +11S7" (k) |

For this recursive algorithm, there are some

stopping conditions!® some of which are

Sk+1)—S (k) <u
Stk+1) -1, <u
Trace[ S?(k+1)]—n=<u

where ¢ is a small, preselected error bound.
3. Block-decomposition of linear discrete systems

In general, a large-scale system contains wide-
ly different modes, and is often required to
be black-decomposed into several subsystems
with their own characteristics for simulations
and designs.

Consider a linear discrete-time system as

follows:

X (k--1) =AX (k) +Bu(k)
y (k) =CX (k) +Du (k)

(3. 1a)
(3. 1b)

where X (k) ¢ R™', u(k) € R™" and y(k) € R#!
are the state, input and output vectors, re-
spectively.  The state vector X(k) is de-
composed into the n,  and n, vectors x, (k)
and x; (k), and the matrices A, B, C, and
D have a appropriate dimensions.

In this discrete system, the class of ei-
genvalues located near the unit circle in the
Z-plane are assigned to the slow mode and
those located near the origin are assigned to
the fast mode. Thus we need the reference
circle with radius r for block-decomposition.
For system (3-1) the eigenspecturm o (A)

is arranged In decreasing order of absolute

(513)

values: that is

U(A> =1 /\1. e /\m, Ams L /\n}
where

il\l‘ > >}/\m‘ >|/\n1+1| > >‘An[ (3 Zb)

(3. 2a)

From Eq.(3-2b), the positive real value r=
1 is chosen between| An | and | An. | arbitrary.
Thus, the reference circle with radius r is shown

in Fig. 1.

Im slow mode : if o(A) > |r|
fast mode @ if o(A) <] 7]

7-plane

-7

Fig.1. Reference circle on Z-plane,

Now the block-decomposition of a system
can be accomplished via the following th-

eorem 3.1.

Theorem 3.1

For discrete system, the eigenvalues of sign
[ (A—rl;) (A+rl) '] are +1 according to
the magnitude of the corresponding ei-

genvalues of the state matrix.,i.e.

odsignl (A—rl,) (A-+rl,) '

+1i0f |l >r o
Tl A< 3.3)
where o0: s the ith eigenvalue of
sign[(A—rl,)(A+rl,) ']corresponding to the
ith eigenvalue A; of state matrix A.

Proof) The proof of Theorem3.1 can be found
in reference 11).
From Eq.(2-5) and (2-3), we define two

projection operators Ps(A), Pr(A) as follows:
Ps(A) Ssign*[ (A—rl,) (A—riyY]

:zl[[n+[sign(A—r1n> (A+rly) ]



,.:%[1,,+M[I,.,GB (— L) IW]

=M[1® O, JW=M,W,
Ssign [ (A—rly (A+rl,) Y
=l —sign'[ (A—rly (A+rl,)
=I—M[1, &0, W

=M[Op ®1,]W =M, W,

(3. 4a)
P,(A)

(3.4b)

It is obvious that Rank [Pg(A)] =n, and

Rank [Pf(A)_l =Ny,
Let matrices S; and S; be defined as

S, 2ind[Ps(A) ] =1s,, sz, ", sn, IER™ M5, ER™0
(3.5a)

S 2ind[ PA(A)]=15), 55, -, S, JE RV 5, ERmx!
(3.5b)

where S,(or S;) is a monic map which con-

tains n,{or n,) independent column vectors
of Pg(A){or Pg(A)) in Eq.(3-4). These ind-
ependent column vectors are selected from
the n Zn,or =n, column vectors of Pg(A)(or
Pe(A
ors” , n; {or n,) is equal to the trace of Pg-
{A)(or P¢(A)). Thus,

as follows:

)) and the number of independent vect-

we obtain the results

Lemma 3.1
There exist nonsingular matrices H,eR™*™

and H,€R™ *™such that

Sl:MlHl, SZ:MZHZ (36)

Where M, and M, are defined as in Eq.(2. 2b,
¢). Proof) Assume that S, contains n, columns
of Pg(A) with column indices k, and S: con-
tains n: columns of P,(A) with column ind
Then, from

eces k; for i=1, 2, ---, n,(or n;).

the definition of S, and S:, we obtain

Sz: Pf(A) Ez
=M, W.E,&M,H,
3.7)

S, =P (A E,
=M,W,E,2M,H,

where

(514)
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Liekiph... gfmp g Rrxm
H1=W,E1, H,2W,E,
Diek ekreo eimfe R ™

According to sylvester’s inequality®, we ob-
tain Rank (H,) =n, and Rank (H,) =n,, or H,
and H; are nonsingular.

(Q.E.D))

Now define a right block modal matrix

Ms;s as follows

From lemma 3.1
Ms=MH (3.9)
where
H=H,®H,
And from Fg- (3-9) and Fy- 2. 2a)
J, On,x,,z
AM,=AMH=M! - MMH
O,.M, 3J,
6 PR
:M[Jf--ﬁ ]H
Onyxny -
J 3 n XNz
~MH a1 JO }H)ZMSAR
e 3.10)
where
J, { Ony e ,
Ag AHT| e TH ‘
R [Omym oy } (3.11)

The immediate application of Eq.(3-8 — 3-11)
to system theory is the block~decomposition

of a system in the following theorem.

Theorem 3.2
Let

Z (k) =Mz'X (k) (3.12)
where Z (k) =[2T(k) z](k)]T z, (k)ER™*1 and

z,(k)Ew™" - Then the block-decomposed s-
ystem of Eq. (3.1) using Eq. (3, 12) becomes

('k+1) =AZ (k) +Bu (k) (3.13a)
y (k) = ( +Du (k) (3. 13b)
where

Ar=M5'AMs=block diag[ A, A,] (3.13c)
Bx=M3'B=[Bj, | B, 1" (3.13d)
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Cr= CMS:[C& CR;] (3. 136)
proof) FromEq. (2.2b, ¢)
[W, WM, | Wle
[Ml ' 2] -----------------
Lw, WM, WM,
{In, §On,m} 5.14)
Oﬂa X 31"2 o
Then
St S1S, (SiS, ]
1 S [0 B Sl
S S [ENEC s e
(3. 15a)
where ‘+’ denotes pseudo-inverse and
S1S.i=1Ia, S:S.=I, (3.15b)
and from lemma 1
S+Sz (M WE 1) "M, W,E,= ( YIE ) MlMTMzVVzEz
( ) ( 1M)WE2 n.an (3 15¢)
S;SI ( 2W2E> 1W1E1: (WzEz) IM;I\'/Ilvlel
( ) le) \NIElzonz X1, (3 15d)

Substituting Msand M3ztinto Eq. (3.13¢) yields

o {3 ts -3 0
(3.16)
Define
Ag, =STAS, S,Ay=AS,
Ag,=S3AS, S;Ar=AS,
Thus, from Eq. (3.15¢, d)
STAS:=S1S:Ar =On xm, STAS,=SIS.A,,
= On,xm,
Q. E. D)

The parallel result of theorem 3.2 can be

obtained by theorem 3.3

Theorem 3.3

Let's define a left block modal matrix as

M. {VI]
v v,

where
={ind[ PL(A

(3.172)

) JITERm® (3.17b)

(515)

V,=1{ind[ PL(A) [} T€Rm2xn (3.17¢)
Let

Z{k) =MX (k) (3.18)
Then, the alternative block--decomposed

system using Eq.(3-18) becomes

Z(k+1)=A,Z (k) +Bmu (k) (3.192)
y (k) =C,Z (k) +Du (k) (3.19b)
where
=M,AM; ' =block diag[A., A,] (3.19¢)
A, =V, AVi eR™ ™ A, =V,AV; eR™*™
B.=M,B=[BI, | BL,]* (3.194d)
Co=CM;'=[C,, | CL] (3. 19¢)

Proof) Theorem 3.3 can be proved in a man-
ner similar to theorem 3.2.

If more than two subsystems are needed for
the block-decomposition of Eq.(3-1), we can
construct new block modal matrices Ms and
M» by using the generalized matrix sign fu-

nction®  in Z-plane.

Definition 3.1

Let A€eR™™and{| O(A)HUHI‘,, r.t = ¢, where
0<r,<r,and r, r,;ER. The generalized
matrix sign function of A with respect to
the circular stripe(r;,r,)on the Z-plane is

defined as

sighir,. r,) (A) =2signiy,. -, (A) — 1,
=la—2signir, r, (A) (3, 20a)
where
Signir, , r,: (A) éé[sign{m (A) —signr,, (A)]
(3.20Db)
SigNer, n (A) Z=§In_5ignfr, ry (A) (3.20c)

and
sign,r,, (A) :Sign[ (A
r;¥1 for i=1, 2

—rda) (A+rd,) 7],
{3.20d)

The circular stripe(r, ryon the Z-plane is

shown in Figure 2.

Let AGR™" and | [o(A) |} Nir, i=0,1, - k



Fig.2 circular stripe (rj, rg) on Z-plane

=¢ where 0<r,<r,<--<ry and {r;% 1}
€R for 0<i<k. Define
SLind[ signty, .. ro (A)]2ind[ P, (A)JER™™,

1 <i<k (3.21a)

V,2%nd[ (signty, . r (A))7] TSt ind[ PE(A) 1T

eR™x" 1<i=<k (3.21b)
where

P,(A) Ssignty, ., (A) (3.21¢)

Theorem 3.4

Assume that n;%0 for 1 <i<k. Then

M3'AM =block diag[ Ag,, A, -, Ax.]
(3.22a)

M AM3'=block diaglA.,, AL, -, ALl
(3.22b)

where Mg and M, are the right and left block
modal matrices :

Me=[S,! S,i- ' Sil (3.22¢)

M,=[ VI VIl Vi (3.22d)
Let

Z (k) =M5'X (k) =MX (k) (3.23)

where Z (k) =[21(k) z}

(k) - z%(k)]" - Then,

the block-decomposed systemusing Eq. (3.23)

becomes

Z(k+1)=Ay (or AL) Z(k)+By (or By,)
u (k) (3.24a)
y (k) =Cg (or C.,) Z (k) +Du(k) (3.24b)

(516)
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where
Ag =STAS,ER™*™, A, =V,AVIER™ ™,
1 =:=k
Br=M;'B=[B}, B, - BL "
B,=M,B=[B} Bl .- BI]"

Cr=CMs=[Cgy, Cg, -** Ci, ]

CL:CI\4;1:[CJ., CLQ CLK] '
St and V{are the left inverse of S; and the
right inverse of V,for 1<i<k, respectively.
Proof) Theorem 3.4 can be proven in a man-

ner similar to Theorem 3.2 and 3.3.

To  illustrate the  theoretical block-
decomposition method, we consider a fifth—
order of a steam power system in following
chapter.

4. Numerical Example

The fifth-order linearized model of a steam
power system? was discretized with sampling
time of 0.7 sec, and it can be represented
by:

0.915 0.051 0.038 0.015 0.038
—0.03  0.889 —0.0005 0.046 0.111
A=|—0.006 0.468 0.247 0.014 0.048|,
—0.715 —0.022 —0.021 0.24 —0.024
—0.148 —0.003 —0.004 0.09 0.026
(.0098
0.122
B=10.036
0.562
10.115

The open—-loop eigenvalues of A are A,=0.0295,

Ay, 3=0.25064j0.1252 and A, s=0.89284j0.0937.

Find the block -decomposition of this system
which contains three block-decomposed sub-
systems. The first block-diagonal matrix con-
tains one small eigenvalue, the second consists

of two medium eigenvalues and the third con-
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tains two large eigenvalues. Since the ei-
genvalue of the first subsystem is desired to
be lying within the circular stripe(0,0.2]), the
eigenvalues of the second subsystem lying the
circular stripe (0.2, 0.8) and those of the third
subsystem lying within the circular stripe(0.8,
+00), we can select the real values r; as ry=0,
r=0.2, r,=0.8 and ry=-4 oo.

By the recursive matrix sign algorithm Eq.(2 -
(A) yield as

6), sign (A) and sign,

(0.2) (0.8)

follows
signge. (A) =sign[ (A—0.21;) (A+0.215)']=
0.98749D 00-0,99845D-04 0.57292D-03-0.30817D-01 0.74027D~ 01
~0.43038D-01 0.99966D 00 0.19703D-02-0.10598D 00 0.25458D 00
0.19299D-01 0.15398D-03 0.99912D 00 0.475250-01-0.11416D 00
-0.71453D-02-0.57007D-04 0.32711D-03 0.98240D 00 0.42266D- 01
0.33281D 00 0.26553D-02-0.15236D-01 0.81955D 00-0.96866D 00
sign o.s (A) =sign[ (A—0.81;) (A+0.81,)7']=
0.10394D 01-0.86774D-01 0.11581D 00 0.28612D-01 0.59363D-01
0.27302D 00 0.95997D 00 0.26616D-01 0.18585D 00 0.26616D 00
0.33788D 00 0,13994D 01-0.97284D 00 0.13527D 00 0.19500D 00
=0.21777D 01 0.23997D 00-0.12283D 00-0.10170D 01-0.44095D~01
{‘0.56404[) 00 0.77039D-01-0.31731 D-01-0.30166 D-02-0.10095D 01

Also, by the definition of the matrix sign fu-

nction, we obtion

signyg, (A) =—1; SIEN, 4 o) (A) =1
From Eq.(3-20) and Eq.(3-21) we obtain
S,=ind[ signf,ez (A)]=
=ind[ %[sigmo; {A) —signio. (A)]}
=[--0.00626 —0.02152 0.00965 —-0.00357 0.1664]"
Sz=ind[signfo.z, 0.8) (A)]

:ind{ ~21—[Sign[o.z) (A) —signe.s (A)]J

:[ 0.02596  0.15803 0.15929 —1.0853 ‘0.44842]7
—0.04334 —0.01989 0.69%62 0.12001 0.03719

Sa:ind{Sign:;.s, sey (A)]

~ind} L [signon (4) —sign... (4)]]

(517)

7[*1.0197 —0.13651 —0.16894 1.0888  0.28202]"
10,0439 -0.97993 —0.6997 —0.11998 —0.03852J
and
Vi=1ind[ (signg.e.o (A))T]HT
=[—0.00626 0.0259% 0.15803 —1.0197 —0.13651]
V,=1ind[ (signis. 0 ('A))T] ir
7l—0.00005 —0.04334 -0.01989 0.04339 —0.97993
1 0.0009  0.05762 0.01232 —0.05791 *0.01331J
Vi=1{ind[ (signs, s (A))T]I7
_[~0.01541 0.02972 0.14592 —0.01431 —0.09293
| 0.03701 —0.00733 0.00579 —0.02968 ~0.l3308}

Thus, from Eq.(3-22¢) and (3-22d), the right
block modal matrix Ms and the left block

modal matrix M become as follows:

Me=[S$:18:1Ss], M=[VIiV]iVi]"

Now, from Eq.s(3-23) and Eq.s(3-24), the

block—decomposed systems and as follows:

AR, = [0 .02979] = AL1

Ar,—[0.25903 ——0.01435]
10.05027  0.24228 |
A1221‘0.25705 v~0.01346]
10.05139  0.24426
AR::f' 0.89668 0.07719}
P —0.11543 0.88921 /1
A¢3:=7 0.89083 0.08039}
(—0.11071 0.89506
and

Br =[—0.71281], B, =[—0.00446]
[——0.52229} __{0.0IZBQJ

Ry

—0.01523 0.08224
_{—00%$1 2{400Bm]
o 1-0.18915) " [—0.1889 .

The decomposed state matrices eigenvalues
using the proposed block-decomposition al-

gorithm are

A (Ar) =0.02979= A, (AL,)
Ass(Ar, ) =0.25066+70.02554 = Ao s(AL,)
Ass (Ar) =0.892957) 0.09434 = A, s (AL,)



and are close to original system eigenvalues,

the worst error being

=0.97 t
%A x100=0.97 percen

5. Conclusions

A linear discrete large-scale system often
contains multi-modes for which simulations
and designs are extremely difficult. In this
paper, an algorithm to block-decomposition
of the system is presented by the matrix sign
function and the generalized matrix sign fu-
nction, so that the analysis and the design
of the system can be ealily performed.

The main results of this paper are:

(1) we develop a block-decomposition al-
gorithm for the system by defining the re-
ference circle, the circular stripe and the pro-
jection operators based upon the matrix sign
function in Z-plane.

(2) There is no need to find the eigenvectors
of system matrix in this algorithm.

{(3) This algorithm do not need a permutation
of the system.

(4) There is no need to solve the algebraic

Riccati and the Lyapunov-type equations.
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