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Decentralized Stabilization of a Class of Large Scale
Discrete-time Systems Subject to System Parameter Uncertainties
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Abstract

This paper presents a decentralized adaptive scheme to stabilize a class of large-scale discrete-time linear
systems subject to.system parameter uncertainties. The scheme combines an adaptive nonlinear feedback
control for compensating some effects by unknown system parameters and the exact model-based linear
feedback control for overriding the unfavorable effects by interconnections. A condition of stability is deriv-
ed, under which the overall adaptive system is assured to be globally stable. Also, a numerical example is

provided to illustrate the feasibility of the scheme.

Nomenclature

| 7| : Absolute value of a real number r

fa |l : Euclidean norm of a finite dimensional
vector a

AT . Transpose of a matrix A

At : Inverse of a square matrix A

AM{A) : Maximum eigenvalue of a square matrix A

VAl Spectral norm of a matrix A defined as
IA | =A%, A7 4)

1, : n-dimenstonal identity matrix

R : n-dimensional vector space
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1. Introduction

Recently, the real-time implementation of advanc-
ed complex control algorithms becomes feasible with
the help of powerful microcomputers, and much effort
has been made to solve adaptive control problems under
discrete-time formulations[1]-[5]. But, the adaptive
techniques in these works were for lower order
systems, and hence are not directly applied to large
scale systems either due to difficulties in simultaneous
adjustment of a large number of parameters or due to
difficulties in treating interconnections even under
decentralized adaptive schemes[6]-{8].

Very tew results are available for the problem of
adaptive control of large scale systems. Hmamed and
Radouane[7] proposed a new type of local adaptive con-
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trollers to stabilize a class of interconnected continuous
systems. Also, in[8), for the same problem, an alter-
native simple approach was developed. However, these
results were restricted to the class of continuous-time
systems in which each subsystem has a single input and
moreover is assumed to be given in a controllable form.

In this paper, we propose a decentralized adaptive
scheme to stabilize a wider class of discrete-time
systems in which each subsystem may have multi-input
and have some relaxed assumptions on the system
structure. It is noted that an extension of the results
in the continuous case to a discrete version is not ob-
vious. The adaptive scheme is a state-space version
of[1] and a condition of stability is derived based on
the result of[11]. Also, a numerical example is il-
lustrated via computer simulation.

2. Problem Statement

Consider the large scale interconnected linear
system described by

ik + 1) = Axfk) + Bufk) + A 5/K),i=1,2,.., N

Jmly jei

(1)

where z; ¢ R™ is the state of the i-th subsystem, u, ¢
R~ is its control input, and A,, B, and A, are constant
matrices of appropriate dimensions. It is assumed here
that

(A-1). The upper bounds on the dimensions n, and
m, are known.

(A-2). The state x, is available for measurements
only at the i-th subsystem.

(A-3). The elements of A, and B, are unknown,
while the bounds on the elements of A; are
known.

(A-4). The interconnection matrix of any two sub-

system i and i is factored as
Ay = B, A, i#. (La)
For convenience, an additional assumption will be made
later.
Now, the problem is to determine a local control for
each subsystem (decentralized control) which stabilizes
the overall interconnected system (1). For this, we first
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present a method to design a local adaptive feedback
control, and then show that the resultant closed-loop
system is assured to be stable.

Remark 1

The assumption (A-3) is not unrealistic in the sense
that a designer usually has information on the bounds
of the interconnection elements, or one may evaluate
then through some identification technique, while the
system parameters of each subsystem itself may be
assumed to be unknown due to inaccurate modelling
of the complex dynamic system and/or due to its time-
varying feature.

Remark 2

It is easy to see that the assumption (A-4) determine
the class of systems in which each subsystem is inter-
connected by the following relation.

N
vi=u, + LAy,
e

where v, is the effective input which arises after ag-
gregation of all the interactions affecting the i-th sub-
system.

3. Design of Local Adaptive Controllers

The system (1) can be rewritten as

2 (k+1) = A, 200 + B u, (&) + (A A;) (k) + (B;-B)

wk + 2 Ay ®,i=12 - - N @
T

where (&, B) is a predetermined controllable pair. In
order to stabilize the system (2), the following local
adaptive controllers are proposed:

wk = - U+ Gk+1))' (K + F k+1)) 2 ®
i=12--- N 3)

where
Ki=(lni+BT R By BT P.4; -

The symmetric positive definite matrix P, is the solu-
tion of the following discrete algebraic Riccati equation:
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P, = Eg’ P, K; - KIT P, —Br (Iml + Eir P, Ei)

BSP A + 8 L (5)

for a given positive constant ;. Also, in (3), the terms
F. (k+1) and G; (k+1) are the adjustable parameters
whose adaptation laws are to be given later. Applying
the local adaptive controls (3) to the system (2), the
closed-loop system is then

% (k+1) = (4, - BK) xk) + (4, - A, - B.F,(k+1))
k) + B, - B, - B,G,(k+1)) ufk) + ngUx,(k),
i=1,2 - - ,N 6)

It is further assumed here that there exist matrices
F.,* and G,* satisfying the following relations:
Al - Al = E F l*
i- ) "
Bi - B i = B G.'

These conditions actually imply that the column vec-
tors of the matrices (A, — A,) and (B, — 1—3,) should be
linearly dependent on the column vectors of the matrix
B, [9]. The typical cases where these conditions are
satisfied are that [10]
1) the number of state variables in not greater than
that of inputs,
2) the state equation is writen in partitioned
phase variable canonical form.
It is remarked that the matching conditions (7) are
necessary for deriving the generating schemes of
F, (k+1) and G, (k+1).

Then, the closed-loop system (6) becomes

£ (k+1) = (A - BK)x(k) + B, [F* + Fu (k+ 1) 24k)
+B,[G* - G, k+D] uk) + X B,
i

Agx®),i= 1,2, - N
= (A, - BK) x(k) + B, 6, (k+1) wik) +
> B L),

S

where

6, = [\ — Fik+1), G* - G, (k+1)]

240)
wi (k) = [ u,(k)]

(91)

L,j = (Ilmi <+ G‘.*) ZU (9)
The i-th decoupled subsystem of (8) is given by
% (k+1) = (4, - B.K)x4k) + B, 64k +1) k). (10)

Defining
7 (k+1) = xfk+1) - (A - B.K) x(k) (11

the eqn. (10) is simplified as
z. (k+1) = B, 6, (k+1) w, (k) (12)

To estimate 8, (k+ 1) in (12), a modified version of the
parameter adaptation law in [4, 5] is utilized as follows:

8, (k+1) = 6K + ABK) (13)
AO(K) = 6(K) Bz(K) wilk—1) (13.2)
(k) = - il (13.b)

1 + k1) wdk-1)

where d{k) is a scalar sequence and a, is a positive con-
stant satisfying
(-2 a,) + a2 B.BN <0 (13.¢)

It is noted that the generating schemes of F, (k+ 1) and
G, (k+1) in (4) are easily derived from (13).

Regarding the above relations (12) and (13), the
following properties hold:

Lemna 1

Consider the system (12) whose parameters are
adaptively estimated by the law in (13). Let all the in-
itial conditions of z,, 8, and y, be bounded. Then

(i) 8y(k) is bounded for all k = 0.
. k 2

(i) [im 2Py (14)
1+ (E-l; B

(Proof). (i) Choose a Lyapunov function candidate such
that

Vi) = tr {67(k) 64k)} (15)



Then, from egns. (12), (13} and (15), the difference of
V{k) becomes

AVUK) = Vi(k+1) - V. (k)

= tr {2 61(k) 6dk) BT z4k) wilk-1) +
éi(k) z{(k) z{(k) B, BT z{k) pi(k-1)
wik-1)}

< {1 + yik-1) wik-1)}
264K) 28(k) zdk)
_{ 1+yi(k-1) wik-1)
T, zl(k)}

+ o¥k) zT B.

_2iK) {-2a, 1. + o} B, B} 2(k)
T 1+ el k-1 pdk-1)

(16)

Since a, is chosen as in (13.b), AV(k)< 0 forall k > 0.
Hence, it follows that 8(k) is bounded for any bound-
ed initial 640).

(i) Since V(k) is a monotonically non-increasing
function which is bounded below, it converges to a limit
ask = =, ie,

lim

koo

Vik) = V() < .

Therefore

lim

k—oo

k
| 5,AVAD | = | ViO) - Vi) < .

In other words, it follows from (16) that
z"(k) z/k)
I+ o7 &1, k-1)
For the inequality (17) to hold, it is obvious that

2(k) z k)
T e & Dydk1)) 0, as k ~> oo,

o0

< o

a7n

k=0

Hence, the result (14) is established
Q.E.D.

4. A Condition of Stability

The closed-loop system (9) can be represented in an
overall way as

92)
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2k+1) = (A + BL - BK) xX) + z(k+1)
= A k) + z(k+1) (18)

where 27(k) = [x,7(k), ..., 2" ®)]; z7(k) = [z] (k), ...,
z,7(k)]; A = block diag [4,, ..., Ay); B = block diag
[B., ..., BJ); K = block diag [K,, ..., Ka; A=A + B
L - BK, and the matrix L is defined by

L1 2 L]
L,
(18.a)
L =
LLt covennneneenns 0 |

Also, define the following terms for later use.

u = [u‘T,' ey uNr]; lPT = [WIT, aeny WNT,';
P = block diag [P,, ..., Py]

In order to establish the stability of the closed-loop
system (18), the following four Lemmas are needed.

Lemma 2

The properties (ii) of Lemma 1 fori = 1, 2, ..., N
imply that
Il zk) |I*
N + || wk-D |
{Proof). The eqn. (14) in Lemma 1 implies that for a
given £ > 0, there exists K,(e) so that

I z4k) |2
Wi

lim

[

= 0. (19)

e fork >k

+

or
lz4k) I* € e (1 + || wdk-1) [I*), for k > k..

Let
k= mf.x [kﬂy ko, ..., klN]

(20

Then, using (20), we sbtain

| 200 | z Izl I

N + || wik-1) |?

N+ 2| wdk-D) |2

in1

< £, fork > k(.

Since € < 0 in arbitrary, the result (19) follows.
Q.E.D.
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Lemma 3

There exists a bound M > 0 such that

| ou(k) || € M || xlk) |l (21)

(Proof). From (3) and the propeties (i) of Lemma 1 for
i =12, .., N, it easily follows that
| %) | < M, |l % () ) (22
where
M, = | Lo + G+ 1)) || | (K. + Fak+1) |I.
Let

M = max My, M,, ..., My).

Then, using (22), we obtain
I aeti) 17 < 272 ) x00) |2
< M || k) 2.

Hence, the result (21) follows.
QE.D

It is remarked here that when G,(k + 1) is almost equal
to -I,.;, M, in (22) may be nearly infinite. To avoid this
degenerate case, the strategy in [1] for a, satisfying
(13.c) can be utilized.

Lemma 4

Consider the system (18). If the matrix A is asymp-
totically stable, the following relation holds:

lwk | <C + G max Izt | (23)
Where 0 < C, <, 0 < C, < oo,
(Proof) The solution of (18) is given by

(k) = A* x(0) + $A z(k-1) 24)

Taking the norm operation on both sides of (24), we get
00 | < A% 11 #0) | + ¥f A, )

=1

max || Z
l<1_<k|| @ |

<HA 120 | +E 1 Al g 1264 |

k+1

M
« | A* |1 %0 | +—— Il z¢r) i

max
1 “u o<T<k+1

=C; + C40<mrtéxlm Il z(x) |l (25)

93)

_5__

It is noted that the first equality in (25) is induced from
the fact that if the eigenvalues of A lie inside of the
unit circle, one can find two positive constants M, u
with u < 1 such that

| A* || < My, for k > 0.
Then, from (21) and (25), it follows that
I w@) | < | 2G) | + | k) ||

<1+ M| k|

€SA+MC+1Q+ A'I)C4o<mrgxm
Iz I

=C + C’.,<mr‘é’i., Il z() |i.

Replacing k by k-1, we obtain the relation (23).
Q.ED

Let L, be a matrix satiSiyving the relation

AM =B LM (26)
where A, is a known matrix whose elements are com-
posed of the bounds on the elements of A,,. It is noted
here that if A ™ is arranged so that the column vectors
of A, be linearly dependent on those of l§,, then such
a L™ exists.

Lemma 5

Consider the homogeneous part of (18)

wk+1) = (A + BL - B K) xk). @n

The system (26) is asymptotically stable, if § can be

chosen such that
B>ULu IPQA + I BIP| P (28)

where

p = mzax {Bh ’329 cesy ﬁN}

and L, is a known matrix formed by replacing the com-
ponent L, in (18.a) by L,™ in (26).

(Proof). According to Theorem 5 of [11], a sufficient
condition for the system (27) to be stable is that

B>NLIPQA + B P. (29)

Since || Ly |12 2 || L ||, we can obtain immediately (28)
from (29).
Q.E.D.
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Now, using the above four Lemmas, the following
main result is obtained.

Theorem 1 (A sufficient condition of stability)

Consider the overall closed-loop system given in
(18). If B can be chosen such that

B> Lu P+ | BI* || P| (28)

then z(k) and x(k) converge to zero, as k — oo,
(Proof). If the condition (28) holds, we obtain the rela-
tion (23) by applying the result of Lemma 5 to Lemma
4. Then, with the property (19) in Lemma 2 and the
relation (23), the following arguments can be developed
along the line of the proof of Lemma 3.1 in[1).

If {|| z(k) ||} is a bounded suquence, then by (23)
{ll w(k-1) ||} is a bounded sequence. Hence, it follows
that from (19) that

z(k) = 0, as k > oo,

Now assume that {|| z(k) || } is unbounded. This im-
plies that there exist a subsequence {| z(k,) ]|} such
that {|| z(k,) ||} is monotonically increasing and

l}im z(k;) = .

The relation (23) along the subsequence { | z(k)) || } leads
to

P e
N+ Twl =12 2 VN+ [ wiki=1) |

s I z(ki) |
T VNLCI+Co || zki) |
Hence

. z(k;) || 2 1

I
but this contradict (19) and hence the assumption that
{i z(k) ||} is unbounded is false. Then, from the
boundedness of {}j z(k) ||}, it follows that z(k) = 0,
as k = o and {|| ¥(k) ||} is bounded. Furthermore, by
the definition of ¥(k), it is obvious that x(k) is bounded
for all k = 0.

The next step is to show that x(k) = 0, as k — .
The condition z(k) = 0, as k = < implies that for a
givenz > 0, there exists an integer k*(g) such that

|l z&) | £ % for k < k* (30)

(94)

Also, the eqn. (24) can be rewritten with reference to
this k* as follows:

2k) = A x(k*) + ‘"’%;’A' Z(k-1) - 31)

then, with egns. (30) and (31), by the same way in the
proof of Lemma 4, we get

IOl < A+ 11 s+ X | A') mrax ) 2() |
< Cs + C@ &

Since C; is zero for a large k >> k* and €> 0 is ar-
bitrary, we conclude that

k) > 0,as k = o .
Q.E.D.

Remark 3

From the parameter adaptation low (13) and the fact
that z(k) and x(k) = 0, as k = o, it follows that A §;(k)
go to zero, as k — =. But this does not necessarily im-
ply that

6k) > 0,as k > o
i.e., from (9),

F{k) =~ F;* and G(k) > G,*, as k — oo,

Remark 4

It is not possible to see immediately whether the
condition (28) can be satisfied by some f > 0 because
the solution P,, 7 = 1, ..., N of the Riccati eqn. (5) vary
nonlinearly with f.. To solve this problem, an algorithm
in[11]to find a finite parameter p* such that the con-
straint (28) is verified for any § > #* can be utilized.

5. An Example

Consider the unstable discrete-time interconnected
linear constant system given by

-0.515 1.5 0.40.2
xk+1)= { L OJx](k)+[ 0 Jul(k)+[ 0 0 ]xz(k)

-04 1 1 0.3
k1) = [ . 05] k) + [0 2] (k) +

0.2 0
[0.1 0.4]x1(k)
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with initial states
%70) = [1, -1], x70) = [-1, 1].

Here, bounds on the elements of interconnections are
assumed to be known such that

[0.5 0.3] [— 0.3 0.1]
M= , AuM =
0 0 0.2 05

12

As a preliminary step, the exact model for each sub-
system (4,, B)), and the design parameter f, are chosen

such that
— 00] — 00
A, = VA, =
' {1 o} : [0.5 o]

_ 1 —
Bx = [OJ, Bz = Iz
B =1,8. =3
Then, the solution P; of (5) is given by
20 3.2 0
_P-' = ) Pz =
0 1 0 3

Also, L™ in (26) is given by
L™ = [0.50.3), L,,® = A,™.

Based on the above data, it can be easily shown that
the condition of stability in (28) is satisfied.

Now, using the present adaptive scheme, computer
simulations are carried out to stabilize the example
system. The results with initial estimates

Fy(0) = [0, 0.5], G\(0) = 1
2(0)=0, G0) = L

and with the scalar adaptation gain

are presented in Fig. 1- 2. It is noted that the notation
s%;in the figures denote the j-th component of the vec-
tor s,.

As can be seen in the figures, the simulation results
coincide with the expected ones given in section 4.
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Fig. 1. The trajectories of (a) x,* (k), (b) x,* (k)
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Fig. 2. The trajectories of (a) x,* (k), (b) 2,* (k)

6. Conclusion

It has been shown that a class of large scale inter-
connected discrete-time linear systems could be
stabilized’via local state feedback. The proposed decen-
tralized adaptive scheme has combined an adaptive
scheme for compensating some effects by unknown
system parameters and the exact model-based linear
feedback control for overriding the unfavorable effects
by interconnections.

A further topic of immediate interest is to develop
some stabilization method which do not require the
assumption of the existence of the matching conditions.
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