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In quantized control systems, the control values
can take only given discrete (e.g. integer) values.
In case of dealing with the control problem on

the discrete-time, final-stage fixed, quantized
control systems with multidimensional performance
functions, the first thing, new definition on
noninferior solutions in these systems is necessary
because of their discreteness in state variables,
and the efficient search for those solutions at
final-stage is unavoidable for seeking their
discrete~time optimal controls to these systems.
In this paper, to the quantized control problem
given by the formulation of Halkin-typed linear
control systems with two performance functions,

a new definition on noninferior solutions of this
system control problem and a heuristic effective
search on these noninferior solutions are stated.
By use of these concepts, two definitions on
noninferior solutions and the algorithm consisted
of 8 steps and attained by geometric approaches
are given. And a numerical example using the

present algorithm is shown.

1. Introduction

Control systems whose control can take only
discrete values are called quantized systemé%z)
Such systems have usually been optimized by
mathematical programming methods?) In comparison
of quantized control systems with nomal conti-
nuous control systems, it can be stated that
the accuracy is less, but reverse control is
simplified and fixed anticipating acquisition
control can be realized. These points are con-
sidered essential for the problem of switching
systems, ecological systems handling a number
of individuals, investments, traffic control,
etc.?

In this paper, new definitions on noninferior
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discrete solutions and a heuristic search to
their solutions at final-stage k are given.
Where, these are unavoidable, substantial
affairs in case of the optimal control to the
discrete-time, final-stage~fixed, quantized
systems with multidimensional performance func-
tions.

Now, I will explore linear discrete-time
variant quantized systems with two performance
functions and investigate noninferior discrete
solutions at final-stage k with a heuristic
search, which are needed to get all discrete-
time controls of this control problem.

Finally, the algorithm with 8 steps based on
this method is described and compared with ano-

ther method and a numerical example is shown.

2. A Heuristic Search on Noninferior Solutions

to this Quantized Control Problem

2.1 Formulation of this quantized controel
problem >)
The state equation is:
x(i+1)-x(i)= A(D)x(1)+ g(i,u(i)
i= 0,1,...,k~1

Lo (D)

where,

x is the state vector, element of the (n+l)-
dimensional real space Rn+1

u is the control vector, element of subspace
0 (jz is admissible discrete controls'
set which is consisted of bounded, finite
elements) of the r-dimensional real space
]E

A is a (n+l)-dimensional square matrix

g is a (n+1)- dimensional vector function

k is some fixed positive integer value.

It is assumed that

(i) g(i,u) is bounded for u in each i= 0,1,...
,k-1

(it) I+ A(i) is nonsingular matrix in each i=
0,1,...,k-1.



Here, T is a unit matrix. x of W are said that x is boundary points
Initial condition is the next: of co W (convex hull of W ), where W is
x(0)= xg . bounded discrete valued reachable set in

Then this control problem is given as follow. which contained x. See Fig. 2 and Fig. 3 .

Determine the sequence of controls (u(i)}
i= 0,1,...?k~l and the corresponding state
values tx(i)} i= 0,1,...,k such that for
given initial value x4, satisfying state
equation (1) and

x(k) € Rl (terminal condition is free)

... (2)
and two performance functions:
x (k)

[ X“+1(k)J is maximum. .. (3) X(k-1)  X(x)
Now, xP(x), x™1 (k) are denoted the n-th,

(ntl)~th element of x(k), respectively. Fig. 1 A transition of state vectors in each stage
Where, this formulation is derived from the based on state equations

one of Halkin's continuous valued control

problem.6) See Fig. 1 .

2.2 Definitions of multidimensional solutions

Definitions of multidimensional solutions 2.3 An algorithm on a heuristic search of

on continuous values are well-known, for i i
noninferior solutions

example, in reference 7).
In this control problem, as given in 2.1,

In this control problem, the variables used
the degree of dimension of state vector is

in this are discrete, therefore new defini-
5)

n+l, and the number of performance functions
tions on them are necessary.

1s two. Therefore, the degree of dimension on
roHl

S is state space Movement space is n-1 and it is (n-1)-dimen-

Al
id
W 1is reachable Xi;tor s subspace of 3 ., sional space spanmed by el, e2,...,en—1 ;
When some x R i i i
€ is decided, the following now, el is a unit vector that i-th element

notations are given. is 1.

Y s(x) 1is subclass of § which are larger And the degree of space (plane ) on perfor-
(superior to) than the values of x mance functions are two. So I will research
in performance functions the noninferior solutions to the results of

2. 1g(x) is subclass of 3 which are inferior projections of (n+l)-dimensional state values
to or equal to x x on the 2-dimensional performance plane.

2. ~(x) is subclass of 3 which are not

comparable with x. To this control problem, a way of control
Now, these three subclasses are disjoint by the theorem of Quantized Discrete Maximum
and associating of 2: . Principle is kn0wn§) The theorem is the next.
The next two new definitions are provided: Quantized Discrete Maximum Principle
Definition 1 If the sequences {G(i)} i= 0,1,...,k-1
If the relation W C p71gp(x) holds, and corresponding fQ(i)} i= 0,1,...,k are
x € W 1is called complete optimal. optimal, then there exists a sequence of
Definition 2 nonzero vectors {ﬁ(i)} i= 0,1,...,k such
If the relation Zs(x) Nw= ¢ holds, that
x € W is called noninferior. 1) Maximization of Hamiltonian
Now, let x is convex hull points of W, 4 ADRW+ g(1,8(1)), 6(i+1) >
and ¢ is null set. Here, convex hull points 2( A(i)’nz(i)+ g(i,u), P+ > e (a)
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for all i= 0,1,...,k-1 and all ué 11
2) Adjoint Equations

By - Prasi)= AL TP(i+1) e (5

for all i= 0,1,...,k-1

3) Transversality Conditions

P= ¥, Yhzo, Y™ 3 o,

e (6)
Now, {a, b)Y is denoted inmer product of

a and b. T is the transpose.

According to this theorem, is nonzero
vector whose i-th, (i+l)-th elements are
nonnegative, that is
Y= A+ (1-N)ettl
(0<€ A €1 : constant)

:convex combinational (n+l1)-dimensional vector,

Where, it is the meaning of "optimal" in
this paper that with state equation (1),

controls {G(i)} i= 0,1,...,k-1 and corresponding

" . -
{ x(1)} i= 0,1,...,k can let the condition
be satisfied that Q(k) is complete optimal

or a noninferior solution at final-stage k.

To solve this control problem with Q.D.M.P.
(Quantized Discrete Maximum Principle), there
are twa points:

one is to decide 3(k) with the condition
of X(Kk),
and the other is to decide {ﬁ(k)} i= 0,1,...

,k=1 by Hamiltonian's maximization.

It is the purpose in this paper that I can
get the value and condition of Q(k) for the
sake of the decision of P(k).

In this system, the reachable sete W(i) at
stage i are contained with finite discrete
valued state vectors.

W= x4 e (D
W)= {x(1): x(D= (1+ AGE-D] -1
+ g(i-1,u(i-1)) | ui-1e L}

... (8)
i=1,2,...,k ¢

The set of W(k) at final-stage is consisted
of finite, bounded, discrete-valued state vec-
tors {points ).

Complete optimal or noninferior solution g(k)
can be gotten by searching from maximum points
in eN_axies to the same points in eftl_,yies
about the results of projections on el zp4

entl performance plane of the set co W(k):

convex hull of W(k).

Step 3 Find max x™

The algorithm follows.

SteB 1 Compute x(k) with state equation:

x(1+1)= [T+A(D) ) = (1)+ g(1,u(d))
i= 0,1,...,k-1 and x(0)= xo, u(i) € 12

Step 2 Find max xM(k) .

x (k) €W (k)
Choose x(k) such that xn+l(k) is maximum,
if there are plural maximum.
+
o)
x(k)€W (k)
Choose x(k) such that xB(k) is maximum,
if there are plural maximum.
Step 4 1f the result x(k) between Step 2 and

Step 3 is the same, go to Step 5. If not,
go to Step 6.

Step 5 x(k) is complete optimal solution. It

is finished.

Step 6 Let Ql(k) be max x7(k) .

x (k)

Let & (k) be max =0+l () -
2 x (k)

The straight line passing on two points Qi(k)

and Qz(k) is drawn. Search the points x(k)
in the region which is upper than this line

and el en+1—axies.

If it is not existed x(k), go to Step 7.
If it is existed x(k), go to Step 8.

Step 7 Ql(k) and Q}(k) (only these two points)

are noninferior solutions, and it is finished.

Step 8 Search the points x(k) from Ql(k) to

A
X2(k)’ with the information of angle

max [__ Xn+l(k) ~ X1n+l(k) }

x(k) k) - xln(k)

and cut the region which searching has been

done. These x(k) are noninferior solutions,

and it is finished. See Fig. 4 and Fig. 5 .

2.4 Numerical example

Control problem with 5-dimensional state
equation (the degree of dimension of moving
equation is 3, and performance is 2 ) is
given.

Results on noninferior solutions to this
problem by the algorithm in this paper are
shown.

Microcomputer SORD M23 is used for the

computation.
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solutions in this paper, where co W is

the convex hull of w/

State equatioms:

i)} [} (2 0o =121 3) [
| (2| [-3 1 1 0 2| | 2w
S| [Swl=lo 2 2t 0 1]} S
4
S| x| {121 02 2| ] 5w
5 5
) [ lo-1 13t 1 x (1)
da) o W
0 2 0 ul(i)
+ i 0 -3 . Uz(i)
ul (1) w1 1 ua(i)
\l -2 u3(i)
1= 0,1,...,4 N C)
Admissible discrete controls:
Fuln ) 1Y (0 (o
ww= | w2 [e Q-4 lo|]i]]o
L3 Lo 1 1
Initial value:
~N N
EXC 0
2
x7(0)

e

nt+l

"

x(0) =%}l =1|o0

x%(0) 0

%7 (0) 0

Performance functions:

x4(5)
5 + maximize
x7(5)
(the condition on terminal
is free)
Result.

Assumption (i), (ii) are satisfied.
To the set W(5) (the number of points of W(5)
is 243 (= 3°)), I will get

A 7374 A 3692
%y (5) =[ 2.(5) = [
! 5036J , ot 6554
I will get a noninferior solution,
5822
2) =
5036
Thus, I can get the following 6 noninferior

solutions,

1323 1323 2479 2479 3115 3115
-1227 -1227 =1343 ] {~1343 -635 -635
-533 -540 -113 -120 391 384
7374 7374 5822 5822 3692 3692

3784 3784 5036 5036 6554 6554 .

3. Conclusion
For unavoidable search on noninferior solu-
tions of the control problem given in 2.1,
a heuristic search (especially the usage of
line between Ql(k) and Qﬁ(k) ) based on the
geometric approach on the performance plane
and algorithm, numerical example are stated.
In comparison between this method and the
method in reference 8), the number of searching
points is less two third (2/3 ), concretely
42 points to 12 points. Therefore, the effi-~

ciency of searching is rising.
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