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Orthogonal frequency-division multiplexing (OFDM) 
suffers from spectral nulls of frequency-selective fading 
channels. Linear precoded (LP-) OFDM is an effective 
method that guarantees symbol detectability by spreading 
the frequency-domain symbols over the whole spectrum. 
This paper proposes a computationally efficient and low-
cost implementation for discrete Hartley transform (DHT) 
precoded OFDM systems. Compared to conventional 
DHT-OFDM systems, at the transmitter, both the DHT 
and the inverse discrete Fourier transform are replaced by 
a one-level butterfly structure that involves only one 
addition per symbol to generate the time-domain DHT-
OFDM signal. At the receiver, only the DHT is required to 
recover the distorted signal with a single-tap equalizer in 
contrast to both the DHT and the DFT in the conventional 
DHT-OFDM. Theoretical analysis of DHT-OFDM with 
linear equalizers is presented and confirmed by numerical 
simulation. It is shown that the proposed DHT-OFDM 
system achieves similar performance when compared to 
other LP-OFDMs but exhibits a lower implementation 
complexity and peak-to-average power ratio. 
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I. Introduction 

Orthogonal frequency-division multiplexing (OFDM) is an 
attractive multicarrier transmission technique that has been 
implemented in wireless and wired broadband communication 
systems such as LTE, WiMAX, and DVB [1]–[4]. It is spectrally 
efficient due to the minimized orthogonal subcarrier spacing.  
By dividing the wideband system spectrum into narrowband 
subchannels whose response is frequency flat, a single-tap 
frequency-domain equalizer is more efficient than a time-domain 
equalizer to compensate frequency-selective fading. 

However, conventional OFDM systems are sensitive to the 
spectral nulls over frequency-selective fading channels because 
the information symbols transmitted over the subchannels in 
the vicinity of deep fading may be overwhelmed by noise and 
can hardly be recovered at the receiver [5]–[6].  

Linearly precoded OFDM (LP-OFDM) systems are studied 
in the literature as attractive alternatives to mitigate the spectral 
nulls problem [5]–[17]. The basic idea of LP-OFDM is to 
spread information symbols into either parts of or the whole of 
the system band by unitary or trigonometric transforms before 
the symbols are multiplexed by the inverse discrete Fourier 
transform (IDFT). Therefore, in spite of the spectral nulls, 
symbols can still be extracted at the receiver. 

In [6], it was proved that the maximum achievable multipath 
diversity order of LP-OFDM equals the number of available 
channel paths, even with a linear equalizer. In [7]–[8], Debbah 
and others proposed an isometric random precoded OFDM 
scheme in which symbols are spread by isometric matrices. 
The complex field coding was presented to precode the 
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symbols by truncated matrices [9]. In [7]–[9], the precoding 
matrices are restricted to being of full column rank; 
consequently, data rate loss occurs. Linear constellation 
precoding (LCP) was proposed for OFDM in [10]–[11] 
without the loss of data rate. To relieve decoding complexity, 
an optimal grouped LCP in terms of the maximum available 
multipath diversity was also presented in [10]. However, the 
complexity of these schemes is still unsatisfactory due to the 
precoding and decoding processes and symbol detection 
algorithms. 

The LP-OFDM systems based on linear transforms, for 
which fast calculation algorithms are devised, are attractive for 
their simplicity and satisfactory performance. For example,  
the discrete cosine transform (DCT) and Walsh–Hadamard 
transform (WHT) precoded OFDM were investigated in [12]–
[15]. It was shown that the LP-OFDM systems can achieve 
attractive performance improvement in the frequency-selective 
fading channels with a linear minimum mean square error 
(MMSE) equalizer. To further simplify the complexity of LP-
OFDM, several works have focused on how to unite the 
precoding and the multiplexing; that is, making the IDFT 
processes into a simpler algorithm. For example, the fast 
algorithms for calculating cascaded WHTs and DFTs are 
studied in [16]–[19], in which WHTs and DFTs are calculated 
jointly at a lower complexity than when calculating WHTs and 
DFTs separately. In [20]–[21], the fast algorithm was applied to 
the WHT-OFDM system, termed as T-transform, to implement 
the system more efficiently. In addition, it was shown that the 
peak-to-average power ratio (PAPR) of the WHT-OFDM 
signal is improved. In addition, the DHT precoded OFDM 
(DHT-OFDH) was proposed for its superior PAPR 
performance [22]–[24]. In [25], we present a simple algorithm 
to calculate the DHT and IDFT jointly with only one addition 
operation per symbol. 

In this paper, we introduce a more computationally efficient 
and lower-cost DHT-OFDM scheme than other LP-OFDMs to 
counteract the spectral nulls problem based on our previous 
work. In the proposed scheme, the transmitter generates the 
time-domain DHT-OFDM signal by a simple one-level 
butterfly structure that involves only one addition operation per 
symbol. In the receiver, the DFT that is required in other LP-
OFDMs and in the conventional DHT-OFDM is avoided, and 
the frequency-selective fading channel can be compensated by 
a single-tap equalizer with only a DHT module. Thus, both the 
computational complexity and system design of the proposed 
transceiver are simpler and more efficient than that of other  
LP-OFDMs. Moreover, in this paper, the theoretical BER 
performance of the proposed DHT-OFDM with both zero-
forcing (ZF) and MMSE equalizers is analyzed and confirmed 
by simulations. It is shown that the proposed scheme has the 

same ability to mitigate spectral nulls as other LP-OFDM 
schemes but features much lower PAPR and complexity. 

The rest of this paper is organized as follows. The system 
models of the conventional OFDM and DHT-OFDM are 
illustrated in Section II. The low-complexity transceiver design 
for a DHT-OFDM is introduced in Section III. The theoretical 
performance of the DHT-OFDM is analyzed in Section IV, and 
a discussion is provided in Section V. In Section VI, simulation 
is performed to confirm our analysis and the ability of the 
proposed scheme to counteract the spectral null problem. 
Finally, Section VII concludes this paper.  

II. System Models of DHT-OFDM 

1. Conventional OFDM 

In Fig. 1, the system diagram of a conventional OFDM 
system (excluding the dashed frame) is illustrated. For any 
given number of symbols, we can group the symbols in the 
frequency domain as x = [x(0), x(1), … , x(N – 1)]T, where the 
superscript (·)T denotes the transpose operator and N is the 
number of subcarriers. The symbols are multiplexed by an 
IDFT, which can be implemented by taking an inverse fast 
Fourier transform (IFFT), as in 

 s = WHx,                     (1) 

where s is the time-domain signal vector, W is the DFT matrix 
with its (m, n)th element being (1/ N ) e−j2πmn ⁄ N, and (·)H 
denotes the Hermitian transpose operator. The time-domain 
signal is then parallel-to-serial (P/S) converted. To keep the 
signal from the interference of previously delayed signals and 
to convert the channel to be circulant, a cyclic prefix (CP), 
which is the last Nc replicas of s, is attached to the beginning of 
s. The length of CP, Nc, is chosen to be larger than the 
maximum delay spread. The discrete signal is digital-to-analog 
(D/A) converted for transmission. 
 

 

Fig. 1. Conventional OFDM system (excluding the dashed
frame) and conventional DHT-OFDM system (including
the dashed frame). 
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Fig. 2. 10-path uniform power channel in OFDM systems with 
1,024 subchannels. 
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At the receiver, the signal-experiencing multipath channel is 
received, and CP is discarded directly. The received signal is  

 r = Hs + n,                    (2) 

where n is the additive white Gaussian noise (AWGN) and H 
is the quasi-static channel impulse response (CIR) matrix; that 
is, the channel is invariant during one OFDM block. 
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with h(l), l = 0, 1, … , L – 1, to be the CIR of the lth channel 
path. The received signal is transformed by a fast Fourier 
transform (FFT) to the frequency domain as 

 y = Wr = WHWHx + Wn = Λx + v,          (4) 

where v is the AWGN in the frequency domain and Λ is the 
channel frequency response (CFR) matrix, which is diagonal 
with its (k, k)th element, as H(k), representing the channel 
response on the kth subchannel. The frequency-domain signal 
is equalized for decision to recover the transmitted information. 

In broadband OFDM systems, although each subchannel 
experiences flat fading, the whole spectrum is still frequency 
selective. Therefore, some of the subchannels suffer from deep 
fading. In Fig. 2, the CFR of a 10-path channel with uniform 
power delay profile (PDP) is sketched. There are deep notches 
over the spectrum. This shows that symbols on the subchannels 
in the vicinity of nulls cannot be recovered correctly.  

2. Conventional DHT-OFDM 

The Hartley transform is a Fourier-related transform [26], 
and its discrete form was first introduced by Bracewell in 1983 

[27]. The obvious differences compared with a DFT are that 
the forward DHT is identical to the inverse DHT and is real-
valued. Various fast algorithms, termed as Fast Hartley 
Transforms, have been proposed to simplify the implementation 
complexity, which is said to be similar to that of an FFT.  

The block diagram of the conventional DHT-OFDM is 
illustrated in Fig. 1 (including the dashed frame). In contrast to 
conventional OFDMs, before the multiplexing of frequency- 
domain symbols by an IDFT, the symbols are transformed by a 
DHT into the Hartley domain at the transmitter, and the 
precoded signal is  

 xp = Fx,                     (5) 

where F denotes the DHT matrix with its (m, n)th element to 
be cas (2πmn/N) / N = [cos (2πmn ⁄ N) + sin (2πmn / N)] / 

.N  The precoded signal then undergoes the same signal 
processing procedures as the conventional OFDM. At the 
receiver, the received signal is transformed to the frequency 
domain as 

 y = Wr = WHWHFx + Wn = ΛFx + v,         (6) 

where v is the frequency-domain noise, and the equalized 
signal is 

 yp = Gy = GΛFx + Gv,              (7) 

where G is a diagonal weighting matrix based on equalization 
criteria. The equalized signal is transformed by a DHT for 
decision. 

In the DHT-OFDM, as well as the other LP-OFDM systems, 
ZF is unfavorable since the noise within the spectral nulls will 
be amplified and imposed on all symbols after a DHT, 
resulting in serious performance degradation. The MMSE is a 
linear equalizer that has better performance due to its capability 
to suppress noise effectively. The detailed analyses on their 
performance will be provided in Sections IV and V.  

III. Low-Complexity DHT-OFDM  

In this section, we propose a computationally efficient and 
low-cost implementation for the DHT-OFDM illustrated in  
Fig. 3. At the transmitter, the DHT-OFDM signal is generated 
by a one-level butterfly structure that realizes a DHT and an 
IDFT jointly, and the receiver scheme requires only a DHT 
without a DFT to recover the distorted signal with simplified 
system design. 

In a DHT-OFDM system, the baseband time-domain signal, 
s , is virtually obtained by substituting (5) into (1), which gives 

 s = WHxp = WHFx.               (8) 

The DHT and DFT matrices can be expressed as F = C + S and 
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Fig. 3. Proposed low-complexity DHT-OFDM system. 
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W = C – j S, respectively, where the (m, n)th elements of C and 
S are, respectively, 
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It can be readily deduced that the DHT matrix can be 
expressed in terms of a DFT matrix as 
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By exploiting the properties of DFT; that is, WHW = I with I 
being the unitary matrix, and WW = J, where 
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is a N × N flip matrix, and substituting (10) into (8), it can be 
derived that 
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Obviously, instead of the cascaded DHT and DFT operations, 
the time-domain signal can be generated by combining x and x 
flipped by J with a phase difference of π ⁄ 2. Substantially, the 
nth time sample can be obtained by adding the nth frequency 
symbol with the symbols on the (N – n)th, n = 1, 2, … , N − 1, 
subchannel, as in 

      
π

j
4

2
j ,

2
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where s(n) and x(n) are the nth entry of s and x, respectively. 
The proposed transmitter of the DHT-OFDM based on the 

one-level butterfly structure is illustrated in Fig. 3. The symbols 
are firstly scaled and phase shifted, and then x is obtained using 
a one-level butterfly-like structure. Thereby, the transmitter is 
simplified to generate the baseband time-domain signal 
without multiplication except for a scalar and a phase rotation 
of π /4. 

In this paper, a receiver scheme with only a DHT is proposed, 
as shown in Fig. 3. Instead of a DFT, the received signal after 
A/D and S/P conversion is transformed by PH = (WHF)H as 
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The third equation in (14) can be readily deduced from (12). 
The received signal, rp, is obtained by the one-level butterfly 
structure by weighting the received signal with PH. Therefore, 
the frequency-domain signal can be obtained by a DHT, since a 
DHT is unitary; that is, FHF = I, as 

 y = Frp = ΛFx + v.               (15) 

At the receiver, the frequency signal can be compensated by a 
single-tap equalizer based on ZF or MMSE. For the ZF 
equalizer, the weighting matrix G is Λ−1. The corresponding 
equalized signal in (7) can be given by 

 yZF = xp + Λ−1v,                (16) 

and the signal transformed to the Hartley domain by a DHT is 
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where zZF is the noise vector after ZF equalization. It can be 
seen that the channel can be completely compensated, but x 
will be severely corrupted by the amplified noise. The MMSE 
equalizer is an attractive equalizer that can suppress the noise at 
spectrum nulls, and the equalized signal in the Hartley domain 
is 
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where GMMSE is the coefficient matrix based on MMSE, λ is 
the signal-to-noise ratio (SNR), and D = ΛHΛ is an N by N 
real diagonal matrix with its (k, k)th element represented by 
|H(k)|2.  
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IV. Performance Analysis 

In this section, the BER performance of the conventional 
OFDM and DHT-OFDM based on both ZF and MMSE 
equalizers is analytically studied to provide insight into the 
performance improvement of the DHT-OFDM. Quadrature 
phase-shift keying (QPSK) is considered in this section for 
analyzing the performance, but the principle can be extended to 
other modulation formats. 

The BER in terms of the SNR in the AWGN channel for 
QPSK is 

    QPSK ,P Q              (19) 

where Q(x) is defined as 
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In both the AWGN and the frequency-flat fading channels, 
the DHT-OFDM obtains the same performance as the 
conventional OFDM system since there is no notch over the 
spectrum; thus, it provides no frequency diversity. One of the 
advantages of DHT-OFDM is that it is more robust to 
frequency-selective fading channels by averaging the deep 
fading over the whole spectrum, and its performance largely 
depends on the criteria of equalization.  

1. BER Performance of Conventional OFDM System 

For the conventional OFDM system, if the ZF equalizer is 
used, then the equalized signal on the kth subchannel is given 
by  
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and, if the MMSE equalizer is used, then the signal is 
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where the superscript * denotes the complex conjugate operator. 
It can be seen that the conventional OFDM system under the 
frequency-selective fading channel gets the same received 
SNR, |H(k)|2λ, for both ZF and MMSE. Thus, the error 
probability of the OFDM can be given by 
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where E[·] is the expectation operation.  

2. BER Performance of DHT-OFDM Systems 

The analysis on BER performance of DHT-OFDM systems 
is somewhat complicated since the precoded signal is mutually 
correlated, and the precoding matrix will affect the distribution 
of noise on each subchannel after equalization.  

A. ZF Equalizer for DHT-OFDM 

For the ZF equalizer, a signal can be compensated 
completely; thus, the equivalent channel gain (ECG) is equal to 
one, as shown in (17). The noise on the kth subchannel, from 
(17), is 
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The noise variance after equalization can be deduced as 
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where σn
2 is the power of noise v. Since the noise zZF(k) is a 

function of the independent random variables v(n) and H(n),  
n = 0, 1, … , N – 1 (H(n) are mutually correlated), the noise 
power imposed on the kth subchannel can be deduced as 
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Hence, the BER of the DHT-OFDM with ZF equalizer is 
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where Es is the symbol energy, which is a constant for PSK.  

B. MMSE Equalizer for DHT-OFDM 

For the MMSE, the symbols in the Hartley domain are 
shown in (18), and the desired kth symbol at the receiver is 
given by 
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where |H'(k)| is defined as the ECG of the kth frequency-
domain symbol for MMSE. The residual inter-carrier 
interference (ICI) and the noise on the kth symbol are 
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respectively. Thus, the noise power on the kth symbol is 
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Compared with ZF, even if there is a deep fading; that is, a 
small |H(n)|2, the noise power can be effectively suppressed. 
Moreover, the symbols are no longer ICI free. The kth desired 
symbol will be interfered by ICI as indicated in (29), and the 
ICI power is 
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          (32) 

Since x(k) are mutually independent, (32) can be given as  
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  (33) 

The first term in (33) is the power of signal y'MMSE(k) and the 
second term is the desired signal power |H'(k)|2Es, which can be 
readily deduced from (18) and (28). The ICI can be modeled as 
Gaussian if N is large, and the interference plus noise can be 
deduced as 
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(34) 

where |H'(k)| is defined in (28) as the equivalent channel gain 
of the kth symbol. Therefore, the signal-to-interference-plus-
noise ratio (SINR) can be deduced from (28) and (34) as 

 

 
 
 

 
 

 
 

2
1

2
2 1

0

2
1

2
2 1

0

1

1 2π
cas

.
1 2π

1 cas

N

m

N

m

H k
Γ k

H k

H m
km

N N H m

H m
km

N N H m




















        
         





   (35) 

By exploiting the equation 
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the SINR in (35) can be further simplified as 
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Therefore, the error probability of the DHT-OFDM with 
MMSE is 
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To show the resistance of DHT-OFDM against spectral nulls, 
Fig. 4(a) provides a snapshot observation of CFR of a 10-tap 
multipath channel at SNR = 20 dB. It is obvious that in the 
conventional OFDM the symbols in the deep notches can 
hardly be detected correctly, while the ECG of a DHT-OFDM 
in the Hartley domain H'(k) is flat over the whole spectrum 
without notches. Although the ECG in the ZF case is always 
equal to one, the noise will be amplified significantly by G(k), 
as shown in Figs. 4(b) and 4(c), and spread over all symbols 
after the DHT, as shown in Fig. 4(d), with pronounced SNR 
degradation. The MMSE achieves better performance since the 
coefficients of the taps at nulls can be efficiently suppressed, as 
shown in Fig. 4(b). Thus, noise power is effectively limited 
over all the symbols, as shown in Fig. 4(d).  

The cumulative distribution function (CDF) of received 
SNR after the DHT is illustrated in terms of ECG |H'(k)|2 to 
noise power |z(k)|2 in Fig. 5. At an SNR of 7 dB, the 
distributions of the conventional OFDM and DHT-OFDM of 
MMSE superposed together. For the DHT-OFDM with ZF 
equalizer, about 5 dB SNR loss is incurred if Prob(SNR > 
SNR0) = 0.9. Hence, it can be expected that the DHT-OFDM 
with MMSE achieves similar performance as the conventional  
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Fig. 4. Snapshots of the conventional OFDM and DHT-OFDM under a frequency-selective fading channel: (a) CFR of the conventional
OFDM and equivalent channel gains of the DHT-OFDM after ZF and MMSE equalization in the Hartley domain, (b) equalizers’
weights for both ZF and MMSE in the DHT-OFDM, (c) noise v(k) after equalization G(k), and (d) noise being transformed into
the Hartley domain z(k) by a DHT. 
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Fig. 5. CDF of received SNR for OFDM and equivalent SNR for 
DHT-OFDM with ZF and MMSE equalizer with 
different transmitted SNR. 
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OFDM at low SNR and that the DHT-OFDM with ZF 
equalizer exhibits certain performance degradation. As the 
SNR increases, the DHT-OFDM with MMSE equalizer 
experiences a significant performance improvement compared 

to the conventional OFDM; that is, at Prob(SNR > SNR0) = 
10−2, the DHT-OFDM with MMSE sees around a 3 dB to 6 dB 
improvement for SNR values of 13 dB to 25 dB. Moreover, a 
10 dB SNR gain occurs at Prob(SNR > SNR0) = 10−3 at an 
SNR of 25 dB. Thus, it can be concluded that the performance 
improvement of the DHT-OFDM with MMSE is more evident 
at high SNR for its diversity gain. 

V. Discussion 

In this section, the PAPR of the DHT-OFDM is evaluated 
and the system complexity is compared with other LP-
OFDMs. 

1. PAPR of DHT-OFDM 

As discussed in (12) and (13) in Section III, the time-domain 
signal of the DHT-OFDM is the sum of two subcarriers 
modulated by the mirror symmetrical symbols, rather than the 
sum of the overall orthogonal subcarriers modulated by 
different symbols in conventional OFDM systems. Thus, it can 
be inferred that the peak power of the DHT-OFDM signal can 
be reduced significantly, as discussed in [22]. The PAPR of the 
OFDM signal is defined as 
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Fig. 6. CCDFs of PAPR for OFDM, DCT-OFDM [20], WHT-
OFDM [21], and proposed DHT-OFDM. 
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and the complementary cumulative distribution function 
(CCDF) of the PAPR is defined as 

  0Prob PAPR PAPR ,              (40) 

which represents the probability of the PAPR of an OFDM 
signal exceeding a threshold PAPR0. In Fig. 6, the CCDF of the 
PAPR is presented for different 16 QAM LP-OFDM systems, 
and the number of subchannels is N = 1,024. It can be seen that, 
both the DCT and the WHT precoded OFDM proposed in 
[11]–[19] show lower PAPR than the conventional OFDM, 
with around 2.5 dB and 0.5 dB PAPR improvement at 
Prob(PAPR > PAPR0) = 10−4. For the DHT-OFDM, the PAPR 
is reduced further, and the PAPR is reduced by another 3.5 dB 
and 5.5 dB when compared to the DCT and the WHT 
precoded OFDM, respectively. 

2. Signal Processing and System Design Complexities 

In the proposed DHT-OFDM as illustrated in Fig. 3, the DFT 
is saved by utilizing the properties of both the DHT and the 
DFT, and two DHTs and two one-level butterfly structures are 
required. If the input is complex, then the DHT takes 2Nlog2 N 
real multiplications and 3Nlog2 N real additions, and the one-
level butterfly algorithm takes 2N real additions. In addition, 
the single-tap equalizer at the receiver takes 4N real 
multiplications and 2N real additions. Therefore, if the input is 
complex, then the total number of real multiplications and 

Table 1. Comparison of real arithmetic operations between 
conventional and proposed DHT-OFDM. 

Abbr. 
Conventional  
DHT-OFDM 

Proposed 
DHT-OFDM 

Operation  
reduction (%) 

N Add. Multi. Add. Multi. Add. Multi.

64 5,504 3,328 2,688 1,792 51.2% 46.2%

256 29,184 17,408 13,824 9,216 52.6% 47.1%

1,024 145,408 86,016 67,584 45,056 53.5% 47.6%

4,096 696,320 409,600 319,488 212,992 54.1% 48.0%

 

 
additions are 

 Nadd. = 6(Nlog2 N + N)           (41) 

and 

 Nmulti. = 4(Nlog2 N + N),            (42) 

respectively. In the conventional DHT-OFDM as shown in  
Fig. 1, an FFT, an IFFT, and two DHTs are required. If the 
input is complex, then the FFT (IFFT) takes 2Nlog2N real 
multiplications and 4Nlog2N real additions, and the total 
number of real arithmetic operations is 

 Nadd. = 14Nlog2 N + 2N            (43) 

and 

 Nmulti. = 8Nlog2 N + 4N,            (44) 

respectively. In Table 1, their complexities are compared, 
and it can be seen that the complexity of the proposed 
transceiver is around half of that of the conventional DHT-
OFDM. 

In the DCT-OFDM, besides the DFT and the IDFT, both the 
DCT and the IDCT, whose complexity is similar to a DHT, are 
required. Thus, it can be expected that the complexity of the 
proposed scheme is about half of that of the DCT-OFDM. In 
WHT-OFDM, although two T-transforms are applied to 
perform the WHT and IDFT operations joint at the transmitter 
[15]–[19], two additional WHTs are required at the receiver, 
resulting in higher implementation complexity than the 
proposed DHT-OFDM. 

VI. Simulation Results 

In this section, simulations are performed using MATLAB® 
to evaluate and confirm the advantages of the proposed DHT- 
OFDM scheme to provide frequency diversity to improve the 
performance in frequency-selective channels. The system 
bandwidth is 10 MHz with 1,024 subchannels, and QPSK and 
16 QAM are employed. Both the multipath Rayleigh fading  
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Fig. 7. BER of conventional OFDM and DHT-OFDM under flat-
fading channel with QPSK and 16 QAM. 
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channel and the more realistic ITU channel model B are 
investigated. The channel response is assumed to be invariant 
within one OFDM symbol block, and the channel state 
information is perfectly known at the receiver. The path power 
is normalized as Σl |h(l)|2 = 1. 

In Fig. 7, simulation is performed under both the AWGN and 
the flat-fading Rayleigh channels. The conventional OFDM 
and DHT-OFDM achieve the same BER performance since 
the DHT-OFDM provides no frequency diversity in the 
frequency flat-fading channel. In addition, the performances of 
the DHT-OFDM based on ZF and MMSE are identical since 
there is no spectral null in a flat-fading channel and the noise 
will not be amplified. 

A frequency-selective channel is considered in Figs. 8–11. In 
Figs. 8 and 9, a 10-path equal-gain multipath Rayleigh channel 
with a normalized maximum delay of 0.25 is adopted, and 
QPSK and 16 QAM are employed, respectively. The MMSE 
equalizer obtains significant improvement compared with the 
conventional OFDM and ZF. This is because the frequency 
nulls are averaged and the noise is effectively suppressed, as 
analyzed in (31) and (37). Due to the noise enlargement, the 
DHT-OFDM with ZF is even inferior to conventional OFDM, 
especially at low SNR. Its performance curve is asymptotically 
approaching the conventional OFDM as the SNR increases. In 
addition, the numerical results follow the analytical results as 
studied in (27) and (38). 

In Fig. 10, simulation is performed under ITU channel 
model B with QPSK, 16 QAM, and 64 QAM formats. It is 
observed that for 16 QAM and 64 QAM, the conventional 
OFDM outperforms DHT-OFDM with MMSE at low SNR, 
and crossover occurs at 12 dB and 20 dB, respectively. A  

 

Fig. 8. BER of conventional OFDM and DHT-OFDM under 10-
tap multipath fading channel with QPSK. 
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Fig. 9. BER of conventional OFDM and DHT-OFDM under 10-
taps multipath fading channel with 16 QAM. 
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simple explanation is that, at low SNR, the received SNR of all 
the symbols is averaged below a certain detectable SNR in 
DHT-OFDM, but for OFDM some of the symbols are still 
recoverable. 

In Fig. 11, simulations are performed for the WHT, DCT, 
and DHT-OFDM under ITU channel model B. In both the ZF 
and MMSE schemes of different LP-OFDM, they achieve 
almost the same BER performance. Thus, it can be inferred 
that the proposed DHT-OFDM scheme inherits the same 
ability to exploit the frequency diversity. 
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Fig. 10. BER of conventional OFDM and DHT-OFDM under 
ITU channel model B with QPSK, 16 QAM, and 64 
QAM. 
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Fig. 11. BER performances of DCT, WHT, and DHT-OFDM 
under ITU channel model B. 
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VII. Conclusion 

This paper presents a low-complexity DHT precoded 
OFDM system to mitigate the spectral null problem under 
frequency-selective fading channels. The precoded signal is 
obtained using a one-level butterfly structure that requires only 
additions rather than DHTs and IFFTs, and only a DHT is 
required at the receiver. Theoretical analysis and simulations 
confirm that the proposed scheme is robust in frequency-
selective channels by spreading symbols into the whole 

spectrum to exploit the frequency diversity. Compared with 
other LP-OFDM schemes; for example, WHT and DCT 
precoded OFDM, the proposed scheme exhibits much lower 
PAPR and simplified signal processing complexity. Thus, these 
advantages make the proposed scheme a promising low-cost 
solution for frequency-selective fading channels. 
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