• 제목/요약/키워드: linear Matrix Inequality

검색결과 483건 처리시간 0.041초

섭동을 갖는 대규모 시스템의 비약성 성능보장 제어기 설계 (Nonfragile Guaranteed Cost Controller Design for Uncertain Large-Scale Systems)

  • 박주현
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권11호
    • /
    • pp.503-509
    • /
    • 2002
  • In this paper, the robust non-fragile guaranteed cost control problem is studied for a class of linear large-scale systems with uncertainties and a given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design a state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties and controller gain variations. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. A numerical example is given to illustrate the proposed method.

Discrete-Time Robust Guaranteed Cost Filtering for Convex Bounded Uncertain Systems With Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.324-329
    • /
    • 2002
  • In this paper, the guaranteed cost filtering design method for linear time delay systems with convex bounded uncertainties in discrete-time case is presented. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytotype less conservative than norm bounded parameter uncertainty. The main purpose is to design a stable filter which minimizes the guaranteed cost. The sufficient condition for the existence of filter, the guaranteed cost filter design method, and the upper bound of the guaranteed cost are proposed. Since the proposed sufficient conditions are LMI(linear matrix inequality) forms in terms of all finding variables, all solutions can be obtained simultaneously by means of powerful convex programming tools with global convergence assured. Finally, a numerical example is given to check the validity of the proposed method.

Robust Discretization of LTI Systems with Polytopic Uncertainties and Aperiodic Sampling

  • Lee, Dong Hwan;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1255-1263
    • /
    • 2015
  • In the previous work, the authors studied the problem of robust discretization of linear time-invariant systems with polytopic uncertainties, where linear matrix inequality (LMI) conditions were developed to find an approximate discrete-time (DT) model of a continuous-time (CT) system with uncertainties in polytopic domain. The system matrices of obtained DT model preserved the polytopic structures of the original CT system. In this paper, we extend the previous approach to solve the problem of robust discretization of polytopic uncertain systems with aperiodic sampling. In contrast with the previous work, the sampling period is assumed to be unknown, time-varying, but contained within a known interval. The solution procedures are presented in terms of unidimensional optimizations subject to LMI constraints which are numerically tractable via LMI solvers. Finally, an example is given to show the validity of the proposed techniques.

고정 구조를 가지는$H_\infty$ 전력계통 안정화 장치 설계 (Design of a Fixed-Structure H$_{\infty}$ Power System Stabilizer)

  • 김석주;이종무;권순만;문영현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권12호
    • /
    • pp.655-660
    • /
    • 2004
  • This paper deals with the design of a fixed-structure $H_\infty$ power system stabilizer (PSS) by using an iterative linear matrix inequality (LMI) method. The fixed-structure $H_\infty$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the practical applicability of the proposed algorithm.

시간지연을 갖는 불확정성 대규모 시스템의 강인 제어기 설계 (Design of Robust Controller for Uncertain Large-scale Systems with Time-delays)

  • 이희송;김진훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권1호
    • /
    • pp.26-32
    • /
    • 2000
  • In this paper, we consider to robust controller design problem for the linear large scale systems with the uncertainties and the time-delays. The considered time-delays are that exist in the state and the input of the subsystems and the interconnected subsystems. And the considered uncertainties are two general types that exist in the system, input and interconnected matrices. Based on the linear matrix inequality(LMI) and Lyapunov theorem, we present sufficient conditions for the existence of a controller that guarantees the asymptotic stability of systems regardless of the uncertainties and the time-delays. Also, the controller can be easily obtained by checking the feasibility of the LMI's. Finally, we show the usefulness of our results by an example.

  • PDF

NON-FRAGILE GUARANTEED COST CONTROL OF UNCERTAIN LARGE-SCALE SYSTEMS WITH TIME-VARYING DELAYS

  • Park, Ju-H.
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.61-76
    • /
    • 2002
  • The robust non-fragile guaranteed cost control problem is studied in this paper for class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-hounded arid time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound far all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost contrellers is 7iven in terms of the feasible solution to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.

구조적 파라미터 불확실성을 갖는 안정한 선형계에 대한 강인 포화 제어기 (Robust Saturation Controller for the Stable LTI System with Structured Real Parameter Uncertainties)

  • 임채욱;박영진;문석준;박윤식
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.517-523
    • /
    • 2006
  • This paper is focused on a robust saturation controller for the stable linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. Based on affine quadratic stability and multi-convexity concept, a robust saturation controller is newly proposed and the linear matrix inequality (LMI)-based sufficient existence conditions for this controller are presented. The controller suggested in this paper can analytically prescribe the lower and upper bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. Through numerical simulations, it is confirmed that the proposed robust saturation controller is robustly stable with respect to parameter uncertainties over the prescribed range defined by the lower and upper bounds.

대형급 무인잠수정의 심도 및 속도 제어 (Depth and Speed Control of Large Diameter Unmanned Underwater Vehicles)

  • 김도완;김문환;박호규;김태영
    • 전기학회논문지
    • /
    • 제66권3호
    • /
    • pp.563-567
    • /
    • 2017
  • This paper deals with the depth and speed controls of a class of nonlinear large diameter unmanned underwater vehicles (LDUUVs), while maintaining its attitude. The concerned control problem can be viewed as an asymptotic stabilization of the error model in terms of its desired depth, surge speed and attitude. To tackle its nonlinearities, the linear parameter varying (LPV) model is employed. Sufficient linear matrix inequality (LMI) conditions are provided for its asymptotic stabilization. A numerical simulation is provided to demonstrate the effectiveness of the proposed design methodology.

다중 상태 시간지연을 가지는 연속시간 특이시스템의 지연종속 $H_{\infty}$ 필터링 (Delay-dependent $H_{\infty}$ filtering for continuous-time singular systems with multiple state-delays)

  • 김종해
    • 전자공학회논문지SC
    • /
    • 제46권5호
    • /
    • pp.22-28
    • /
    • 2009
  • 본 논문에서는 다중 상태 시변 시간지연을 가지는 연속시간 특이시스템의 $H_{\infty}$ 필터링 문제를 다룬다. 제안하는 필터의 목적은 필터링 오차 특이시스템(filtering error singular system)이 정규성, 임펄스 프리, 점근적 안정성 및 $H_{\infty}$ 노옴 유계(bound)를 만족하는 선형 필터를 설계하는 것이다. 먼저, 다중 상태 시변 시간지연을 가지는 특이시스템에 대한 새로운 지연종속 유계실수정리(bounded real lemma)를 자승 요소를 기초로 하는 유한 합 부등식(finite sum inequality)을 이용하여 제안하고, 이로부터 $H_{\infty}$ 필터가 존재할 조건과 필터의 설계기법을 최적화가 가능한 선형행렬부등식(linear matrix inequality)으로 제시한다. 마지막으로 예제를 통하여 제안한 필터 설계 알고리듬의 타당성을 확인한다.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX PRODUCTS OVER SEMIRINGS

  • Song, Seok-Zun;Cheon, Gi-Sang;Jun, Young-Bae
    • 대한수학회지
    • /
    • 제45권4호
    • /
    • pp.1043-1056
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix ordered pairs which satisfy multiplicative properties with respect to spanning column rank of matrices over semirings.