ME2 2= g2 Axde

Hoi7] dA

ujotd MSEE wx
51D-11-3

Nonfragile Guaranteed Cost Controller Design for Uncertain

Large—Scale

AN = =

Systems

&*

(J. H. Park)

Abstract - In this paper, the robust non-fragile guaranteed cost control problem is studied for a class of linear
large-scale systems with uncertainties and a given quadratic cost functions. The uncertainty in the system is assumed
to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are
assumed to have norm-bounded controller gain variations. The problem is to design a state feedback control laws such
that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified
upper bound for all admissible uncertainties and controller gain variations. Sufficient conditions for the existence of such
controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A
parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible
solutions to a certain LMI. A numerical example is given to illustrate the proposed method.

Keywords - lLarge-scale systems, Non-fragile guaranteed cost controller, Lyapunov method, linear matrix inequality.

1. Introduction

During A large-scale interconnected dynamical system
can be usually characterized by a large number of state
variables, system parametric uncertainties, and a complex
interaction between subsystems [1]-[2). In view of
reliability and practical implementation, the decentralized
stabilization of large-scale interconnected systems
becomes a very important problem and has been studied
extensively for more than two decades [3-11]. However,
when controlling a real plant, it is also desirable to
design a control systems which is not only stable but
also guarantees an adequate level of performance. One
way to address the robust performance problem is to
consider a linear quadratic cost function. This approach is
the so-called guaranteed cost control {12]. The approach
has the advantage of providing an upper bound on a
given performance index and thus the system
performance degradation incurred by the uncertainties is
guaranteed to be less than this bound. Recently, there
have been considerable efforts to tackle the guaranteed
cost controller design problem [13-17].

While the above methods yield controllers that are
robust to uncertainties in the plant under control, their
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robustness with respect to uncertainties in the controllers
themselves has not been considered. In the recent study
by Keel and Bhattacharyya [18], it is shown that the
controllers may be very sensitive, or fragile with respect
to errors in the controller coefficients, although they are
robust with respect to plant uncertainty. This raises a
new issue: how to design a controller for a given plant
with uncertainty such that the controller is insensitive to
some amount of error with respect to its gain, ie. the
controller is non-fragile. More recently, there have been
some efforts to tackle the non-fragile controller design
problem [19-22]. Unfortunately, uptill now, the topic of
robust non-fragile control for large-scale systems has
been received little attention. Up to our knowledge, there
have been few results in the literature of an investigation
for the problem of the system.

In this paper, a class of uncertain large-scale systems
with parametric uncertainties in the system matrices and
controller gain  perturbations is considered. The
uncertainty is time-varying and is assumed to be
norm-bounded. Using the Lyapunov functional technique
combined with a linear matrix inequality (LMI) technique,
we develop a robust non-fragile guaranteed cost control
for this system via state feedback, which makes the
closed-loop system robustly stable for all admissible
uncertainties and guarantees an adequate level of
performance. A stability criterion for the existence of the
guaranteed cost controller is derived in terms of LMlIs,
and their solutions provide a parameterized representation
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of the control. The LLMIs can be easily solved by various
cfficient convex optimization algorithms (Boyd et al. [23]).
Finally, a numerical example is given to illustrate the
proposed design method.

Notations: Throughout the paper, R” denotes the »
dimensional Fuclidean space, and R"™ ™ is the set of all
nXm real matrices. I denotes the identity matrix with
appropriate dimensions. For symmetric matrices X and
Y, the notation X > Y(respectively, X = Y) means that
the matrix X—Y is positive definite, (respectively,
nonnegative). of delay-independent stability results. Above
all, the time-delay considered in these works is constant
and their results are only applicable to the systems with
same delay arguments.

2. Problem Formulation

Consider a class of uncertain large-scale system

composed of N interconnected subsystems described by

Sitaqy = [A+dAplx{D+ g[Az'j
! 1)
+AA ,,(t)]x,(t)-f-B,u,(t), i=l,2,'-~,N

where x{f)e R™ is the state vector, and u(He R™
is the control vector. The system matrices A;B; and
A are of appropriate dimensions, and J4A,(#), and
4dA (D
time-varying parameter uncertainties in the system.
(A;Bp,i=1,,N, is

stabilizable, and the time-varying uncertainties are of the

are real-valued matrices representing

Assume that the pair

form

AAz( t) = DaiF‘ai( t)Eais
(2)
AA ii( t) = D aijF rzij( t) E aijr

where D,,D,;, E, and E_  are known constant
real matrices with appropriate dimensions, and F (9,
and F () are unknown matrix functions which are

bounded as
FY(OF (<, FTADF ,{D<I, ¥V i, j=0. (3)

Associated with the each subsystem S; is the following

quadratic cost function

Ji= f:[xiT(t)Qixi(t)+u,«T(t)Riul(t)]dt 4

noon, —_— .
;R and R, € R are given

positive~ definite matrices.

where
Now, although one finds the controller #,(H=
—~K;x(H for each subsystems, the actual controller

implemented is

ul)=—[K,+ 4K Jx (D, i=1,2,, N 5)

where K; R™ ™ is the nominal controller gain to
be designed and JK; represents the additive gain

perturbations of the form
AKi:Hiw,'(t)E,' (6)

with H; and E; being known constant matrices, and
@D the uncertain parameter matrix satisfying

OT(DO(D<pl, p;>0, i=1,2,, N (7

Here, the objective of this paper is to develop a
procedure to design a state feedback controller uA{ £ for

uncertain system (1) and cost function (4), such that the
resulting closed-loop subsystem given by

9&1(),‘) = [A,+AAl(t) - B,Kz— B,H,Q,(t)E,]x,(t)
(8)

is asymptotically stable and the closed-loop value of the
cost function (4) satisfies J; < J!, where J' is some

specified constant.

Definition 2.1: For the uncertain large-scale discrete-
time system (1) and cost function (4), if there exist a

control law #; (9 and a positive J; such that for all

admissible uncertainties, the closed-loop system (8) is
asymptotically stable and the closed-loop value of the

cost function (4) satisfies J; < J7, then Ji is said to be

a guaranteed cost and #:(#) is said to be a guaranteed

cost control law of the system (1) and cost function (4).

Remark 2.1: The controller gain perturbation can
result from the actuator degradations, as well as from the
requirement for re-adjustment of controller gains during
the controller implementation state [18-19]. These
perturbations in the controller gains are modelled here as
uncertain gains that are dependent on uncertain
parameters. In the literature [20-21], the models of
additive uncertainties and multiplicative uncertainties are



used to describe the controller gain variation. The
uncertainty given in (6) is a class of additive
uncertainties.

Before proceeding further, we will state well known
lemma.

Lemma 2.1 [23]. The linear matrix inequality

Ax) Sx)
ST(x) Wx)

>0

is equivalent to

M0, Ao)—SHW '(xST(x) > 0,

where Q(x)= Q7(x), Mx)= W'(x) and S(x) depend

affinely on x.

3. Controller Design

In this section, we consider the problem of decen-
tralized robust non-fragile guaranteed cost control for the
uncertain closed-loop system described by (8) using the
Lyapunov method combined with LMI technique.

Here, for simplicity, we define

A &= ( gA 1‘]‘A Z;) 1/2, Ddi: ( ﬁD aingij) 1/2, (9)
Faald TF

E ;= ( 25‘ ij‘E aji) 1/Z-
Faakl

Theorem 3.1:

fragile guaranteed cost controller for each subsystems if

u{d=—K;x{f is a robust non-

there exist positive-definite matrix P; and positive
scalars ey, and &; such that for any admissible
F{H,F (), and @D, the
following matrix inequality holds:

uncertain  matrices

AP +PA+euPD DyPi+eg' ELE
~PBK;—KIBI'P+ ¢ 'ETE;+ ¢,0,P.BHHB!P;
+ PiA gA 4P+ PD 4D 5P+ (N—= DI
+ELE 4+ Q;+ KIRK<0 for i=1,2,,N.

10)

Proof : Consider a Lyapunov function candidate

V= gV,= gx,r(t)P;x,-(t). (11)

The time derivative of V is given by
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V= ﬁl *J(DP x4+ xI(HP; 28
= 12

= ngxiT(t)P,-ﬁéf(t).
Substituting (8) into (12), we have
V= g{xf(t)[A,-TP,-+PiAi+2P,-D,,iFa,-(t)Ea,
—2P BK,—2PBH®(DE]x{d (13)
+2x](DP; ji:#,-(A 51 D iF s DE 1)x t)}
Using the well-known fact that
UdVT+ VAU <eUU ™ +e 7 'VVT, > 0

for any matrices U,V and 4 with 474 <
eliminate the unknown factor, F (8, F ,{f) and @{),

of parameter uncertainties. Then the terms on right-hand
side of (13) are bounded as

I, we can

22/ () PD oiF o DE oix ()
<eggul( BPip F i HF (DD Px P
+6011 T(t)EatEarx (t)

<egx{(OPD DLPx () +eq'x[(DELE ,x (9
- R/ (OPBHOL) Ex L)

< ﬁ:(e{l T(HETEx (D
+ex/(OP,BH® () O/ (DH]BPx 1))
< 3 5[ EIEx (D + epaT() PBHHIBIPx (D)

g‘lzx’T(t)PiiA D

< 3(+1OP.3A AP )+ TxTDx(0)
- ﬁ;(x (DPA 4ALP LD+ (N=DxT(Dx (D)

22/ (O P3D o DE D)
< 2O PED WF O F LD DL, P ()
+ f}x,’( DETE t))
< 2}(¥) P D WDLPA(D + Sl (D ETE (D)
- ﬁ;( F(OPD WDLPx D+ Sal (DELE e )

where A ; and D, are defined in (9), and &g and
€; are positive scalars to be chosen.

Using (14), we obtain a new bound of V as
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V= BxOIATP 4 PA+ e 0P DLP,
+e0'ELE y+e 'E]E;—2P BK,+ epP,.BHHB!P,
+ PA AP+ PD 4D P+ (N— DIx{ )

b3 ATOELE. (). (15)

Note that

g j =$TL:# jij( HDE Zif'E ai;‘xj( )]
= 235/ (D 20EiE oji)x (D (16)
210 ZETE )

= gxir(t)EZiEdéxi( D.
Then, (15) is simplified a

V::V,'

< ﬁl{xf(t) [ATP,+PA+euPD  D%P;
+ e ELE w—2P.BK ;+ ¢ 'ETE;
+ 0P BHHIBIP;+ P:A 4A 4P+ P.D 4D P,
+(N=DI+ ELE zlx (D)},
an

Here, the matrix inequality (10) implies that
V= g‘\ Vi (18)
— 2 [T Que D+ (D Rau D] <.

Q:> 0 and R;> 0, this implies that the
system (8) is asymptotically stable by Lyapunov stability

Noting

theory. Furthermore, from (18) we have

% (DQadD)+u"(HRu(2) < V; < 0.

Integrating both sides of the above inequality from 0
to T/ leads to

[ 137D Quk D+ () R D)

As the closed-loop system (8) is asymptotically stable,
when T/—oo,

x (TPPx{Ty — 0.

Hence we get

[T Qa0+ u (D Rau D]t 19)
< I (OPxL0) 2 JF.

In the following, we will show that the above
sufficient condition for the existence of guaranteed cost
controllers is equivalent to the feasibility of LMI.

Theorem 3.2 : For given R; > 0 and ;> 0, if
there exist a matrix M, a positive-definite matrix X,
and positive scalars, ep; and g, such that for

1=1,2,---,N, the following LMI is feasible:

r XET XET (N-D"x, XE, X, M

* —eod 0 0 0 0 0

E I S § 0 0 0 0

Xk * —1 0 0 0 <0

* k% * -1 0 0

* ok ok * * -1 0

* % * * * *x  —R!
(20)

where X,;=P; ! and

T =XA+AX+ eoD Dy~ BMi— M{Bf
+epBHH Bl + A 4AG D aDG.

Furthermore, the state feedback control law
u,-(t)=—K,-x,-(t)=—M,»Xl-_lx,~(t) (2D

is a non-fragile guaranteed cost control law for robust
decentralized stabilization of the uncertain systems (8),
and the corresponding closed-loop value of the cost
function satisfies J; < ],-*, in which ],-* is given in
(19).

Proof: By premultiplying and postmultiplying X, onto
(10), we get

XA+ AX;+eoD Dyt e XELE X,
—BKX;— XK[B[+e 'X.E[EX;+e0.BHHBI
+A gA G+ D gD+ (N=D) XX+ XEGE X,
+XQX,+XKIRKX; < 0, i=1,2,,N.

(22)

Using change of variable, M;= K;X;, and Lemma 2.1,
the inequality (22) is equivalent to the LMI (20). This

completes the proof.

Remark 3.1:Since the inequality (20) is a linear



matrix inequality in X;M; ey, ¢€; the inequality (20)
defines a convex solution set of (X;M;e, &), and
therefore various efficient convex optimization algorithms
can be used to check whether the LMI is feasible.

Moreover, the decentralized gain matrix K, can be
calculated from the relation M;= K,P,' after finding the

LMI solutions, XA=P;") and M. from (20). In this
paper, in order to solve the LMI, we utilize Matlab’'s LMI
Control Toolbox [24], which implements state-of-the-art
interior- point algorithms, which is significantly faster
than classical convex optimization algorithms [23].
Theorem 3.2 :presents a method of designing a state
following
theorem presents a method of selecting a controller

feedback guaranteed cost controller. The

minimizing the upper bound of the guaranteed cost (19).
Theorem 3.3 :Consider the system (8) with cost
function (4). If the following optimization problem

min a
XM ey, era; '
(Z) LMI (20) (23)

—a; z1(0)

(#) < 0, for i=1,2,--.N

iy —Xi

has a solution set (@; X; M; e, ¢;), then the control law
(21) is an optimal non-fragile guaranteed cost control law
which ensures the minimization of the guaranteed cost
(19) for the uncertain large-scale system (8).

Proof : By Theorem 3.2, (i) in (23) is clear. Also, it
follows from the Lemma 2.1 that (i) in (23) is equivalent

to 270X, 'xA0) < a;. So, it follows from (19) that
fi*< a;

Thus, the minimization of @¢; implies the minimization

of the guaranteed cost for the subsystem (8. The
convexity of this optimization problem ensures that a
global optimum, when it exists, is reachable.

To 1illustrate the application of the proposed method,
we present the following example.

Example 3.1: Consider a large-scale system which is
composed of the following two interconnected subsystems

) 1 0 0.4 0.1 0.5
%, () Z{ 2()+ x(D
-2 —1 0.30.4 0.51
+A4A (D x (D + 4A (D x. (D) + u (D,
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10 1 0.3 0.2
() =100 1 [x(d+1]0.10.2{x,(8

21 -3 0.5 1

0
-rdAg(t)x;)(t)+AA21(t)x1(t) +11 0.5 uz(t)
01

sin(f) 0 Hl 0]
0 sin@dllo 1]

sin(2H(0 1 11,

where

0 0

0.1 0.2

0
4A ()= {
0.1

0 00.37[sin@) 0 0 100
4A,()=10.3 0 0.2 0 0 0
0.10 0.5 0

0

A4A 1 (H=10.1| sin(H[1 1],

00090
0 sin(H 1001

0.2

and the initial condition of each subsystems are as
follows:

x,(0) = [—0.7 0.5]7
%5(0) [105 —-1]%

I

Also, the following additive controller uncertainties of
the form (6) is considered:

10
H, = {111, E1:[ , o1=1
01
10 101
S
01 011

Associated with this system is the cost function of (4)
with @=1,Q,=1,R,=0.2] and R,=0.2L
Here, solving the optimization problem (23) of Theorem

3.3, we find the positive solutions of the LMIs for the
subsystem 1 as

0.5514 0.1383

Xlz[ ] M, =[5.0000 0.0000],

0.1383 0.2599
e =1.6277, ,=0.8986, a;=2.9154.
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Similarly, the solutions for the subsystem 2 are as

follows
0.7270  0.7585 —0.6868
X.=| 0.7585 1.1859 —0.6482|,
—0.6868 —0.6482 1.7427
5.0000 5.0000 —0.0000
e ~0.0000 2.5000 5.0000 |

€02 =0.9562, &;,=0.4873, a,=2.1258

Therefore, the gain matrices, K, of the stabilizing

controller, u;, for two subsystems are
K, = M X1'=[10.4650 —5.5689]
12.4060 —1.3138 4.4005

Ky = M;X;'= ,
—1.8633 5.6069 4.2204

and the optimal guaranteed costs of the uncertain
closed-loop system are as follows:

JF=a,=2.9154
J5 = a,=2.1258.

For computer simulation, the following control laws are

employed:
ul(t) = —(I+H1¢1(t)E1)K1x1(t)
u() = — I+ Hy @, (D E) Koo D).
where
sin() 0
0,(H = ]
0 cos(®
cos(2) 0
D5(1) :[ .
0 sin(#)

The simulation results are given in Figs. 1 and 2. In
the figures, one can see that the system is indeed well
stabilized irrespective of uncertainties and controller gain
variations.

4. Conclusion

In this paper, we have investigated the problem of

non—fragile guaranteed cost control of large-scale

interconnected systems under parametric uncertainties and
additive controller gain variations. We have developed a

state feedback controller for guaranteeing not only the
robust stability of the closed-loop system but also the
cost function bound constraint. Finally, a numerical
example is given for illustration of controller design, and
simulation result shows that the system is well stabilized
in spite of controller gain variations and uncertainties.
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