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Discrete-Time Robust Guaranteed Cost Filtering for Convex

Bounded Uncertain Systems With Time Delay

Jong Hae Kim

Abstract: In this paper, the guaranteed cost filtering design method for linear time delay systems with convex bounded uncertainties
in discrete-time case is presented. The uncertain parameters are assumed to be unknown but belonging to known convex compact

set of polytotype less conservative than norm bounded parameter uncertainty. The main purpose is to design a stable filter which
minimizes the guaranteed cost. The sufficient condition for the existence of filter, the guaranteed cost filter design method, and the
upper bound of the guaranteed cost are proposed. Since the proposed sufficient conditions are LMI(linear matrix inequality) forms in
terms of all finding variables, all solutions can be obtained simultaneously by means of powerful convex programming tools with global
convergence assured. Finally, a numerical example is given to check the validity of the proposed method.
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1. Introduction

Since the Kalman filtering theory has been introduced, much
effort has been devoted to the development of filtering design
algorithms. Also, the extensive use of optimization criteria like
the H> and/or H norm has consolidated the importance of
estimation and filtering in linear system theory during the last
decades. In the guaranteed cost filtering approach[1], the de-
sign methods were developed for guaranteeing the upper bound
of guaranteed cost function. However, there are a few results
considering guaranteed cost filtering. Recently, the Ho, fil-
tering approach has been developed from the loose assump-
tion of boundedness of the noise variance. In this case, the
H, performance index to be minimized being the worst case
Hs norm from the process noise to the estimation errorf2-
4]. Petersen and McFarlane[1] presented the results on the
design of robust state feedback controllers and steady-state ro-
bust state estimator for a class of uncertain linear systems with
norm bounded uncertainty. Wang et al.[5] considered the ro-
bust Hy/H state estimation for discrete-time systems with
error variance constraints. Xie and Sohf6] studied the prob-
lem of Kalman filter design for uncertain systems using Ric-
cati equation approach. However, they just considered parame-
ter uncertain systems without time delay using Riccati equation
technique. Geromel et al.[2] dealt with Hy and H robust fil-
tering for discrete time systems and convex bounded uncertain
systems by LMI techniques. Also, Palhares er al.[7] considered
the problem of designing a full order stable linear filter that min-
imized the worst-case peak value of the filtering error output
signal with respect to all bounded energy inputs, in such a way
that the filtering error system remained quadratically stable.

On the other hand, the delayed state is very often causes
for instability and poor performance of systems[8] and refer-
ences therein. Recently, Souza et al.[9] considered the prob-
lem of robust H filtering for continuous-time uncertain lin-
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ear systems with multiple time-varying delays in the state vari-
ables by LMI technique. Wang et al.[10] investigated the ro-
bust filter design problem for a class of nonlinear time de-
lay stochastic systems by ARI(algebraic Riccati inequality) ap-
proach. This is somewhat conservative because some vari-
ables should be pre-determined to find a robust filter. Kim[11]
proposed the continuous-time guaranteed cost filtering design
method to guarantee the minimization of upper bound in guar-
anteed cost function for time-varying delay systems with pa-
rameter uncertainties by LMI approach. However, there are no
results on the problem of discrete-time robust guaranteed cost
filter design for discrete-time uncertain systems with time delay.

In this paper, we present the robust guaranteed cost filter de-
sign algorithm for time delay systems with convex bounded un-
certainties in discrete-time case. The optimization problem to
get the filter and upper bound of guaranteed cost function is
given. Also, It is shown that the system without time delay can
be solvable using the proposed design method. A numerical
example is demonstrated to show the validity.

The notations are fairy standard. The notations are fairy stan-
dard. [ and 0 stands for the identity and the zero matrices with
proper dimensions, respectively. The symbol * represents the
submatrices that lie below the main diagonal and ¢7(-) denotes
the trace of the matrix (-). X > 0 (or X < 0) means posi-
tive (or negative) definite symmetric matrix. And, Diag means
block diagonal matrix.

I. Problem statements
Consider a linear discrete-time system with time delay

z(k+1) = Az(k)+ Agz(k — d)
y(k) = Calk) %))
z(k) = ¢i1(k), —d<k<0

where z(k) € R™ is the state vector, y(k) € R is the mea-
surement output vector, and ¢ (k) is an initial value function.
Time delay d is a positive integer. For simplicity, we just con-
sider linear time delay systems. In the rear part, we explain
the filter design method for time delay systems with convex
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bounded uncertainties. And, we assume that the system (1) is
asymptotically stable and detectable. This assumption guaran-
tees that the boundedness of the filtering error holds, since the
asymptotic stability of the filtering error dynamics depends on
the states and error state vectors of the filtering error dynamics.
The aim is to design a stable guaranteed cost filter described by

ik + 1) = Az(k) + Ky(k) 2)

where, A and K are design parameters. If we take the error
state vector as follows:

e(k) = x(k) — &(k), 3)
then the error dynamics is obtained

e(k+1) = Ade(k)+(A—-KC— A)x(k) + Agz(k — d)
z(k) = Le(k)
Gy
by defining the error state output as z(k) = Le(k). Define the
following augmented state vector

zs(k) = { i((,]z)) J )

such that the filtering error dynamics is given by

zp(k+1) = Asas(k) + Agps(k —d)
z(k) = Cras(k)
k
wp(k) = ¢s(k) = [ ZZ&Q } —d<k<0
(6)
where some notations are denoted by
A 0
Ar A-KC-A A’
_ Ag O @)
A = { Aq 0O } ’
¢y = [0 LJ.

Associated with guaranteed cost filter (2), we introduce the
following filtering design objective:

Determine stabilizing filter parameters A and K
that achieve minimization of guaranteed cost in
filtering error dynamics.

(3)

Also, we introduce guaranteed cost function as follows:

T =" 2(k) (k). ©9)

k=0

II1. Robust guaranteed cost filtering

In this section, we present guaranteed cost filter design meth-
ods of discrete-time polytopic uncertain systems with time de-
lay. The objective of guaranteed cost filtering is to determine
filter variables A and K that achieve asymptotic stability and
minimization of guaranteed cost function in filtering error dy-
namics. First, the sufficient condition for the existence of guar-
anteed cost filter and guaranteed cost filter design method for
the system without uncertainty are established. And then, the
result is extended to the discrete-time linear polytopic type con-
vex bounded uncertain system with time delay.

Theorem 1: If there exist positive definite matrices(or scalar)
Py, Pp, 51, S3, o, Q, and matrices Sz, M1, Mp satisfying the
following optimization problem:

minimize {a+tr(Q)} subject to

AP1 0 PlA
* P PoA—-MC - M;
i) * * —PL+ 5
* * *
* * *
* * *
0 PiAg 0
M, PA, 0 (10)
So 0 0
P+ Sa+LTL 0 o | <9
* -5 =S
* * —S3

it) — o+ ¢1(0)T P11 (0) + ¢2(0)" P2gp2(0) <0,

1) — Q + NTS1Ny + N¥SoN,
+ NT 82Ny + N7 83N, < 0,

then (2) is an optimal discrete-time guaranteed cost filter and
J* = o+ tr(Q) is an upper bound of discrete-time guaranteed
cost. Here, some notations are defined as

M, = PA,
M, = PK,
St ads (s ()T = NNT (11
N
:[N;MNIT NE .

Proof: Define a Lyapunov functional as follows:

k—1

V(zs(k)) = s (k) Pzs(k) + > 27()7 Szs(i). (12)

i=k—d
The difference of the (12) is given
AV = V(zg(k+ 1)) — V(zs(k))
= ay(k+ )T Pes(k+ 1) — s (k) Prp(k)  (13)
+a; (k)T Szs(k) — sk —d)T Sk — d).

From the difference (13) and the guaranteed cost function (9),
the following to satisfy the asymptotic stability and minimiza-
tion of the guaranteed cost in filtering error dynamics implies
the linear matrix inequality (i) of (10).

AV < —z(k)" (k) < 0. (14)

Therefore, we have

T

z s (k) y
zs(k—d)
{ ATPAf —P+S+CfCy ATPAg ]
* —S+AdePAdf
@ s (k)
) { zy(k —d) } <0
(15)
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which ensures asymptotic stability of filtering error dynamics.
And if we set

[P0 S S
P_[O PQ},S_[* SJ (16)

then the following inequality in (15)

[ AfPA; — P+ S+CfCy AFPAy ] <0

* —S+ A PAg
(7
is changed to
—p! Ay Aagr
*  —P+S+CfCy <0 (18)
* * -5

using Schur complements[13]. By pre and post multiplication
with Diag[P [ I, the inequality (18) is equivalent to

—-P PAy PAgs
x —P+S+C{Cy 0 <0. (19
* * -5

By substituting the (7) and (16) into (19), the LMI (19) is equal
to

—P1 0 PIA
+ —P, PA—PKC-PA
* * —P 4+ 5
% * B3
* * *
* * *
0 PiA; O (20)
PA PA; 0
Sy 0 0
—P 4 S+ LTL 0 0 <0
* ~S1 _SQ
* * —S3

Using some changes of variables, M; = PA, My, = PK,
(20) is transformed into (i) of (10). Furthermore, by the sum-
mation of both sides in the inequality (14) from O to Ty — 1, we
obtain
Tr—1
- Zkio Z(k)TZ(k)
>y (Tf;TPle(Tf) — 7(0)" Pz (0)
+ Ziinfd s (i)TSiEf(i)
-2 L ()T Szs(3).
As the closed loop system is asymptotically stable, when Ty —

oo(or Ty — 1 — o0) and using initial condition, some terms go
to zero. Hence we get

(21)

>

S 2T 2(k) < dr(O)TPEO)+ S 65()TS05(0). (22)

k=0 i=—d

This is an upper bound of guaranteed cost. The first term of
right hand side in (22) is changed to —a+ ¢ (0)T Po;(0) < 0.
This is equivalent to (ii) in (10). The second term of right hand
side in (22) has the following relations:

S dr (DTS () = 32 tr(ds ()T Ses (i)
=tr(NNTS) = tr(NTSN) < tr(Q),
(23)

where @ Is a positive definite matrix to determine the upper
bound of tr(NTSN). Therefore, —Q + NTSN < 0 is equal
to (iii) in (10). m]
Hence, we can get the optimal discrete-time guaranteed cost
filter satisfying the filtering design objective. Also, all solutions
including filter variables(A = P{l M, K = P{lﬂfg) and
the upper bound of guaranteed cost(J* = a + tr(Q)) can be
calculated simultaneously because the proposed sufficient con-
ditions are LMIs regarding all finding variables. The guaranteed
cost controller design algorithm can be directly applied to lin-
ear systems without time delay by simple manipulations in the
following Corollary 1.
Corollary 1: Consider a linear system without time delay in
(1), i.e., Aqg = 0. If the following optimization problem

minimize « subject to

—P 0
) * —Py

i) .
* *

P A 0

P,A - MC — M, M,

<0,
—P 0
* —P,+ LTL

i) — o+ ¢1(0)T Pigp (0) + ¢2(0)T Pag2(0) < 0,
(24)
has a solution, positive definite matrices(or scalar) P, Ps, a,
and matrices M1, Mo, then (2) is an optimal guaranteed cost
filter and J* = « is an upper bound of discrete-time guaranteed
cost. Here, My = P A and My = PR K.

Now, we treat the problem of time delay systems with convex
bounded uncertainties. The robust guaranteed cost filter of con-
vex bounded uncertain system with time delay can be designed
using the proposed result and slight modifications of Theorem
1.

Consider the following linear convex bounded uncertain sys-
tem with time delay.

z(k+1) Azx(k) + Agz(k — d)
y(k) = Ca(k) 25)
a(k) = ¢u(k), —d<k<O

Here, system matrices are assumed to be unknown but belong-
ing to a known convex compact set of polytope type, i.e.,

(Aa Ad7 C) ev (26)

where

U= {(A, A4, C)|(A, A4, C) = 30| 7i(Ai, Aai, Ci),
Zi‘:l =1}

@n
and A(-) denotes the setof 7, 1 = 1,2, ..., [ vertices of the above
convex polytope. The kind of convex bounded parameter uncer-
tainty has been widely used[12] and references therein. Note
that in many practical cases, very often, only a few entries of
the matrices of systems dynamics contain uncertain parameters.
Theorem 2: Consider a uncertain system with time delay (23).
If there exist positive definite matrices(or scalar) Py, Pa, S\,
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Ss, a, @, and matrices Sa, M1, M, satisfying the following
optimization problem

minimize {a+tr(Q)} subject to

-P 0 P A;
* —P, P A; — MaC; — M,
i) * * —P1+ 5
* * *
* * *
* * *
0 P Ag; 0
M Py Ay 0
Sa 0 0
Pt S+ o0 o | <0
* —Sl _SQ
* * —53

i) — a4+ ¢1(0)T Pr1(0) + ¢2(0)T Pag2(0) < 0,

i1) — Q + N{ 81Ny + NJ SoN;
+N{T SNy + N¥S5Ne < 0

(28)
for all (Ai, Aai,Ci) € A(¥), then (2) is an optimal discrete-
time guaranteed cost filter and J* = o + tr(Q) is an upper
bound of discrete-time guaranteed cost. Some notations are de-
fined as same as (11). Here, filter variables can be determined
from the obtained solutions, A = P, ' M; and K = P; ' Mj.

Proof: The proof follows in a straightforward way from the
proof of Theorem 1. a

Similarly to the Corollary 1, Theorem 2 can be applied to the
systems without time delay.

Corollary 2: Consider a linear system without time delay in
(25), i.e., Aq = 0. If the following optimization problem

minimize o subject to

— P 0 P A;
) —Py PoA; — MaCy — My
* —P
* * *
2
0 (29)
M
0 <0,
—P + LTL

i) — o+ ¢1(0)T Prgp1(0) 4 ¢2(0)" P2p2(0) < 0,

has a solution, positive definite matrices(or scalar) P, P, «,
and matrices M, M for all (A;,C;) € A(¥), then (2) is an
optimal guaranteed cost filter and J* = « is an upper bound
of discrete-time guaranteed cost. Here, M = PQA and Mo =
PK.

IV. Numerical example

In order to check the validity of the proposed robust guaran-
teed cost filter design algorithm, an example is given. Consider

an uncertain linear discrete-time system with time delay

zk+1) =

y(k)
z(k)

o5 (k)

—0.1 0
{ 0.1 —-05+424, }m(k)
01 0
+{ 01 —0.3 }l'(k_d)
L1+ A 0 Jx(k)
[1 1 ]ek)
[0 0 01 1]"

327

(30)

Here, we treat —0.1 < Ay < 0.1and 0 < A, < 1 yielding an
uncertain systems of { = 4 vertices as follows:

0.1 0 01 0
A= [ 01 —0.6 }  Aa = { 01 —0.3
C1 = [ 1 0 },

[—01 0 ] [ —01 0
Az = | 01 —06 |’ Adz = | 01 —03 |’
Ca=[2 0]

[ —01 0 ] [ —01 0
A= 01 o4 N Adaz = | 01 —03 |’
Cs=[1 0],

[ —01 0 ] [ —01 0
As = | 01 —04 |’ Aas = | 01 —03 |’
Ci=[2 0].

(31)
First, the solutions satisfying Theorem 2 are obtained simulta-
neously using the command of ‘mincx’ in LMI TOOLBOX]14]
as follows:

P = [ 24845  —0.0502 |
| —0.0502 4.7845 |’
P = [ 1.6574 0.9335
| 0.9335 1.0093 |’
S, = [ 0.1542 —0.3932 |
| —0.3932 1.3862 |
S, — [ —0.0086 —0.0007 ]
0.0190  —0.0027 |
Sy — 0.1406  —0.0117 ]
| —0.0117  0.0023 | (32)
M, — { 0.0165 —0.0026 } .
0.1206 —0.0148 |’
—0.0486
M. = [ 0.4034 ]
a = 1.2129,
0.0006 0 0 0
v 0 0.5575  —0.0012 0
Q= 0 —0.0012  0.0011 0
0 0 0 0.0006

Hence, A and K are determined from the changes of variables,
M = P, A and M> = P> K. Therefore, the robust guaranteed
cost filter and the upper bound of guaranteed cost are

~0.1196  0.0141
e 1 EsN L
k4 1) { 0.2301  —0.0277 }"L(L)
053117 ,, (33)
+{ 0.8909 ]y(k)’
J* = 1.772.

Moreover, the obtained filter guarantees not only the asymp-
totic stability of filtering error dynamics but also minimization
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of guaranteed cost. If we set time delay d = 2, the trajecto-
ries of error state vectors and error state output are shown in
Fig. 1 ~ Fig. 3. Therefore, the guaranteed cost filter guaran-
tees the asymptotic stability of filtering error dynamics in Fig.
1 and Fig. 2 because the error states converge to zero as time
goes to infinity. Also, the filter ensures the minimization of
guaranteed cost function. From Fig. 3, J can be calculated
as J = 1.5974(< J*). Note that the gap between the upper
bound of guaranteed cost(.J™) and the calculated value({J) from
the simulation result is changed according to the value of initial

conditions.
03— ———— p———
.
02k | |
ol
0.1r— - } ’ q
of ‘ ’ ’ H Mo —
) )
3 0.1+ i i H u
0. ;
i i
-02+ [ :
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k
Fig. 1. The trajectory of e1 (k).
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k
Fig. 2. The trajectory of ez (k).

V. Conclusions

In this paper, we proposed the guaranteed cost filtering de-
sign algorithms for time delay systems with convex bounded
uncertainties in discrete-time case. The sufficient conditions for
the existence of filter and guaranteed cost filter design methods
were presented using LMI approach. The proposed stable fil-
ter guaranteed minimization of the upper bound in guaranteed
cost. Also, it has been shown that the guaranteed cost filter de-
sign method for the systems without time delay could be solv-
able using the proposed method and slight modifications. The

0.8r

06

04r

z{K)

0.2}
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Fig. 3. The trajectory of z(k).

validity of the proposed design algorithm was checked by an

example.
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