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대형급 무인잠수정의 심도 및 속도 제어

Depth and Speed Control of Large Diameter Unmanned Underwater Vehicles 
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Abstract - This paper deals with the depth and speed controls of a class of nonlinear large diameter unmanned underwater 

vehicles (LDUUVs), while maintaining its attitude. The concerned control problem can be viewed as an asymptotic stabilization of 

the error model in terms of its desired depth, surge speed and attitude. To tackle its nonlinearities, the linear parameter varying

(LPV) model is employed. Sufficient linear matrix inequality (LMI) conditions are provided for its asymptotic stabilization. A 

numerical simulation is provided to demonstrate the effectiveness of the proposed design methodology.

Key Words : Large diameter unmanned underwater vehicles (LDUUV), Depth control, Speed control, Lyapunov, Linear matrix 

inequality (LMI), Asymptotic stability.

Corresponding Author : Dept. of Electrical Engineering, Hanbat

National University, Korea 

   E-mail: dowankim@hanbat.ac.kr

* Maritime R&D Center, LIG Nex1 Co., Ltd.

Received : January 12, 2017; Accepted : January 26, 2017

1. Introduction

 Depth control is one of important control issues for 

unmanned underwater vehicles (UUVs). Various design 

techniques, including the sliding mode control [1], the 

reduced order output feedback [2], the adaptive nonlinear 

control [3], the adaptive sliding mode control [4], the robust 

control [5], and the gain-scheduled output feedback [6] are 

introduced on this issue. Recently, one of the powerful design 

approach, a linear matrix inequality (LMI)-based design has 

been applied in the control problems of UUVs [7], [8]. 

However, there is a lack of research on the LMI approach to 

the depth control compared to other techniques.

This paper presents an LMI approach to the control 

problems of a class of nonlinear large diameter UUVs 

(LDUUVs) in the depth plane. Differently from the existing 

LMI technique [8], the proposed approach focuses on the 

depth control as well as the speed one for more general UUV 

dynamics. We formulate the concerned problem as an 

asymptotic stabilization of error dynamics with respect to the 

desired depth, speed, and attitude. By using the proposed 

controller scheme and the boundedness, we prove that the 

depth and the speed control design problems can be handled 

separately. Based on this property, we derive sufficient LMI 

conditions for its asymptotic stabilization in the sense of 

Lyapunov criterion. 

Notations: The relation ≻ (≺ ) means that the 

matrix   is positive (negative) definite. max () 
is the maximum (minimum) eigenvalue of matrix .  

denotes th row of the matrix .  is defined as . 

η indicates the ball η  ‖η‖≤Δη with Δη∈ℜ . ℐ indicates 

the integer set ⋯. Symbol  denotes a transposed 

element in a symmetric position. 

2. Preliminaries

Assuming the pure depth-plane motion with the 

body-relative surge velocity , the heave velocity , the pitch 

rate , the depth  , and the pitch angle , consider the 

simplified depth model of LDUUVs 

    
(1)


   (2)

where     ∈ℜ,   ∈ℜ, ∈ℜ is the actuator 

torque with control inputs ξ and  ∈ℐ, ∈ℜ × is a 

frame transformation, ∈ℜ× contains the mass and the 

hydrodynamic added mass terms, and ∈ℜ means 

Coriolis-centripetal matrices including the added mass and 

the damping matrix (see [9], [10]). In specific, , , , and 

 in (1) and (2) are represented by
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









  







  






  









,  sin cos   


,  






  

  
  







 






  

    

    







where   ,   ,    , 

   ,     ,  is the vehicle mass,  is 

the -position of the center of gravity, and  is the mass 

moment of inertia term. 

Problem 1: Consider LDUUV (1) and (2). Define    

and    , where the desired depth ∈ℜ  and surge 

velocity ∈ℜ  . Then, design ξ and  ∈ℐ such that ‖‖, 
‖‖, ‖‖, and ‖‖ asymptotically converge to zero.

3. Main Results

The following propositions and lemma will be required in 

the proof of our main result:

Proposition 1: Consider the depth motion of LDUUV (1) 

and (2). Define. With the change of new state variables  

   
∈ℜ and       

∈ℜ , an error system can 

be represented by 










 

 
 
















 









 
 










 (4)

where 

 
 













sin cos 

   

     

    

 

 
 











sin


 
  





  
  





 


    

 


   ∑   



 




 
∑   



  






   
   


 

 
 



 

 
 







, 





   
   
  
  





 
Proof: It follows from (1), (2), and    that

sincossin
 














 
 





 


    

   


















  
  





 
  









 






  







  














 

and

 




  
 

 
       

           
 

  
∑   

. ■

 

Proposition 2: It is true that

 
  




  




  




  





on  × × , where 

  



sin


,   

cos
,   


, 

  


,    , ∈ℐ ,

 max∈
sin

,  min∈
sin

,  max∈cos, 
 min∈cos ,  max∈,  min∈
 max∈ ,  min∈  

  
 











  

   

     
     

 

Proof: The proof directly follows from the sector 

nonlinearity [11]. ■

Lemma 1: There exists ∈ℜ  such that 

‖‖≤
on  ×× .
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Fig. 1 The time response of . 

Fig. 2 The time response of . 

Proof:  From the facts that

∥∥≤∥ ∥∥   
∥





  .

on  ×× , we see that   is bounded. ■

Theorem 1: Consider (4) together with the proposed 

controllers

 δχ (5)

   (6)  

If there exist 

≻, ≻, and  such that


≺ (7)




 


(8)




 


(9)




 


(10)

 





 
 




≺

(11)

for all ∈ℐ ×ℐ ×ℐ ×ℐ, then for 

     
∈  

∈ℜ  〈
with ∈ℜmin , (5) and (6) asymptotically stabilizes 

(4), where        ,        , and        . In 

the feasible case, 
 

 and 
 

.

Proof: By substituting (5) and (6) into (4), the closed- 

loop system becomes










 



 












 (12)

Consider a Lyapunov function    


  

with  ≻ and ∈ℜ . If LMI (7) holds on 

⊂ × × × ×, then we see that from Proposition 

2, Lemma 1,   ,   , and Schur complement,

⇔ 
 

 

⇔
  




  




  




  








 
 

⇐



 


∥∥∥∥



 


min  

 




 


∥∥∥∥ 

⇐


min 

on  with ∈ℜ min. Therefore, because

LMIs⇒⊂ × × ×


 ⇒⊂

we can conclude that the closed-loop system (12) is 

asymptotically stable on  with ∈ℜmin . ■

4. A Numerical Simulation

Consider the depth-plane LDUUV (1) and (2) together 

with (5) and (6), where its related hydrodynamic coefficients 

are listed in Appendix. Our design goal is to complete  in 

(5) such that  and   asymptotically converges to zero. By 

solving LMIs (7), (8), (9), (10), and (11) with  , 

 ,   , and   , we obtain













   
   
   
   













  
  
  
  
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Fig. 3 The time response of . 

Fig. 4 The time response of . 

Fig. 5 The time response of . 













   
   
   
   

When     , =, and 

  , simulation results for (1) and (2) under (5) and (6) 

with   are demonstrated in Figs. 1-5. From these figures, 

both  and  successfully enters in  and  , respectively, 

while maintaining its attitude   . 

4. Conclusions

This paper has presented an LMI-based design approach to 

the depth control of a class of LDUUVs. Unlike the previous 

result [8], the proposed approach includes the speed and 

attitude controls of the given depth-plane LDUUV. Our 

theoretical results has been successfully verified through the 

given numerical simulation. 

Appendix

The hydrodynamic coefficients in the depth motion of 

LIG Nex1 LDUUV model, obtained by CFD and empirical 

formulations, are as follows.

,   ,   ,  ̇ , 
 ,   ,  ×

 , 

δδ ,  ×
 ,  ̇, 

 ×
 ,  ×

 ,  ×
 , 

   ×
 ,  ,  , 

  ,   ,  , 

 ×
 ,  ×

 ,  ×
 , 

 ×
 ,   ×

 ,  , 

 ,   ,   .
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