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Abstract – In the previous work, the authors studied the problem of robust discretization of linear 
time-invariant systems with polytopic uncertainties, where linear matrix inequality (LMI) conditions 
were developed to find an approximate discrete-time (DT) model of a continuous-time (CT) system 
with uncertainties in polytopic domain. The system matrices of obtained DT model preserved the 
polytopic structures of the original CT system. In this paper, we extend the previous approach to solve 
the problem of robust discretization of polytopic uncertain systems with aperiodic sampling. In 
contrast with the previous work, the sampling period is assumed to be unknown, time-varying, but 
contained within a known interval. The solution procedures are presented in terms of unidimensional 
optimizations subject to LMI constraints which are numerically tractable via LMI solvers. Finally, an 
example is given to show the validity of the proposed techniques. 
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1. Introduction 
 
Continuous-time (CT) systems controlled by digital 

controllers are referred to as sampled-data (SD) control 
systems, which are composed of CT systems to be controlled, 
discrete-time (DT) controllers controlling them, and the 
ideal sampler and zero-order holder to convert the CT 
signals into DT ones and vice versa [4]. When the digital 
controller is implemented on an actual CT plant, the control 
action through the zero-order holder appears as a piecewise 
constant signal in time, which is termed a SD controller. 
Significant research efforts on the SD control design have 
been made in the literature, and they can be divided into 
several categories. For instance, the so-called the direct DT 
design [17] is a design method based on the discretization 
of the CT system, where a DT controller is designed in DT 
domain directly. In the so-called lifting techniques [1, 4, 
27], the SD controller design problem is transformed into 
an equivalent finite-dimensional discrete problem. The 
so-called jump system-based method [14, 25] is based on 
the representation of the system in the form of hybrid 
discrete/continuous model. The input delay approach [10, 
11, 20] treats the SD systems as a CT system with 
uncertain but bounded time-varying delay in the control 
input. 

Among the promising results, this paper focuses on the 
direct DT design method, in which the computation of an 

exact DT model of the original CT plant is required. While 
for LTI systems, the exact DT model is available in 
principle, this is not the case for nonlinear systems [15, 16] 
or uncertain LTI systems [3, 17]. Rather, an approximate 
DT model can be used in replacement of the exact DT 
model for the SD control design. A major drawback of the 
approximation technique is that they can suffer from 
degradation in performance or even lead to instability of 
the resulting SD control system when the approximation 
error is relatively large [18]. 

Especially for DT LTI systems with poyltopic uncer-
tainties, substantial LMI-based results on robust control 
problems have been made up to date (e.g., [5-9, 13, 19, 28-
38]), and most of them implicitly assumed that either exact 
or approximate polytopic DT model of the original CT 
plant is available. In order to apply the linear matrix 
inequality (LMI) methods for control design of DT systems, 
it is essential for the obtained approximate DT model to 
preserve the polytopic structure of the original CT system. 
A widely used simplest method is to take an approximation 
via the first-order Taylor series of the exact DT model 
under the assumption of fast sampling/fast hold [18]. This 
strategy usually works well under fast sampling, but the 
approximation error may become prohibitively large if the 
sampling period is relatively long. To alleviate this problem, 
in the previous work [18], we developed new LMI-based 
techniques to search for more exact approximation of the 
exact DT models of the original CT polytopic uncertain 
LTI systems, in which the discrepancy between the exact 
and the approximate DT models was minimized. To this 
end, we exploited higher-order truncated Taylor series of 
the exact DT model so that the truncation error of the 
approximate DT model can be reduced.  
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Although the proposed method was successful in reducing 
the approximation error, there was still an unsolved problem: 
it can be applied only to the case that the sampling period 
is constant in time. To resolve this problem, in this paper, 
we investigate the robust discretization problem under 
aperiodic sampling. Specifically, it is assumed that the 
sampling period is time-varying and unknown, but lies 
within a known interval. Similarly to [18], this problem is 
tackled by minimizing the norm distances between the 
system matrices of the approximate and exact DT models. 
To obtain numerically tractable method to compute the 
approximation, the truncated Taylor series of the exact DT 
model is used similarly to [18]. The solution procedures 
are given in terms of unidimensional optimizations 
subject to LMIs, which can be readily tractable via convex 
optimizations [2]. To derive the LMI constraints, the so-
called matrix-dilation technique [9], [22-24] is applied. 
A sufficient LMI condition to design a state feedback 
SD controller for the computed DT models is also studied 
briefly as one of applications of the proposed robust 
discretization strategy. Finally, an illustrative example is 
given to demonstrate the potential of the developed 
method. 

 
 

2. Preliminaries 
 

2.1 Notations 
 
The adopted notation is as follows: +  and + : sets 

of nonnegative real numbers and nonnegative integer, 
respectively; n  and m n× : the n-dimensional Euclidean 
space and the set of all m n× real matrices, respectively; 

TA : transpose of matrix A; A>0 (A<0, 0A ≥ , and 
0A ≤ , respectively): symmetric positive definite (negative 

definite, positive semi-definite, and negative semi-definite, 
respectively) matrix A; A B⊗ : Kronecker’s product of 
matrices A and B; He{ }A : a shorthand notion for TA A+ ; 
In : n n×  identity matrix; 0n and 0m n× : 1n×  zero vector 
and m n×  zero matrix, respectively : [ 0 ]h h hI=L  

( 1) ;h h× +∈ ( 1): [0 ] h h
h h hI × += ∈R ; *  inside a matrix: 

transpose of its symmetric term; || ||⋅ : Euclidean vector 
norm for vectors or the matrix two-norm for matrices; A⊥ : 
any matrices whose columns form bases of the right null-
space of matrix A ; [ ]j

ie : unit vector of dimension j with a 
1  in the i -th component and 0 ’s elsewhere.  

 
2.2 Problem formulation 

 
Consider the CT LTI polytopic uncertain system 
 

 ( ) ( ) ( ) ( ) ( ),c c c c cx t A x t B u tα α= +   (1) 
 

where : { : 0}t x x+∈ = ∈ ≥ , ( ) n
cx t ∈  is the state, 

( ) m
cu t ∈  is the control input, and matrices ( ) n n

cA α ×∈  
and ( ) n n

cB α ×∈  are not precisely known but assumed to 

belong to the convex set  
 

, ,
1

( ( ), ( )) ( , ) :( , ) ( , ); .
N

c c i c i c i N
i

A B A B A B A Bα α α α
=

⎧ ⎫
∈ = ∈Δ⎨ ⎬
⎩ ⎭

∑  

 
where NΔ  is the unit simplex given by  

 

 
1

: : 1, 0, 1, 2, , .
N

N
N i i

i
i Nα α α

=

⎧ ⎫
Δ = ∈ = ≥ =⎨ ⎬

⎩ ⎭
∑ …  

 
It is assumed that the system is controlled by the SD 

controller 
 

 1( ) ( ), [ , ), : {0,1, 2, },c c k k ku t u t t t t k+ += ∀ ∈ ∈ = …  (2) 
 

where 0 1{ , , }t t …  represents an unbounded monotonously 
increasing sequence of sampling instants with elements in 

+ , i.e., 0 1lim ; 0; ; ;k k k k kt t t t t k→∞ + + += ∞ = < ∈ ∀ ∈ . 
We assume that the sampling interval, denoted by 

1:k k kt tθ += − , is time-varying and unknown but lies in a 
known compact set, min max[ , ]kθ θ θ∈ , where min0 θ< <  

maxθ < ∞ . The closed-loop SD control system composed of 
(1) and (2) is given by 

 

 
1

( ) ( ) ( ) ( ) ( ),
[ , ), ,

c c c c c k

k k

x t A x t B u t
t t t k

α α

+ +

= +
∀ ∈ ∈

  (3) 

 
The state at time 1kt +  is  
 

 ( ) ( )
1 0

( ) ( ) ( ) ( ).k
c k cA A

c k c k c c kx t e x t e d B u t
θα θ α τ τ α+ = + ∫   

 
Introducing notation ( )( , ) : c kA

d kA e α θα θ = , 
 

 ( )

0
( , ) : ( )k

cA
d k cB e d B

θ α τα θ τ α= ∫ , ( ) : ( )d c kx k x t= ,  

 
( ) : ( )d c ku k u t= , system (3) can be converted to the 

uncertain DT linear time-varying (LTV) system 
 

 ( 1) ( , ) ( ) ( , ) ( ),d d k d d k dx k A x k B u kα θ α θ+ = +   (4) 
 

where k +∈ .  DT LTV system (4) can be viewed as 
the exact discretization of (3) in the sense that 
|| ( ) ( ) || 0, ,c k d Nx t x k k α+− = ∀ ∈ ∈Δ  is satisfied with 

(0) (0)c dx x= and any control input sequence 
{ (0), (1), }d du u … . Note that (4) is the exact DT model of 
the SD control system (3) (or CT system (1)). As indicated 
in [18], due to the nonlinear and infinite dimensional 
nature of ( , )d kA α θ  and ( , )d kB α θ  with respect to the 
uncertain parameters and sampling period kθ , it may be 
difficult to find their exact representations that preserve 
the polytopic structures of ( )cA α  and ( )cB α . To simplify 
the problem, let us consider uniform sampling period 

0 1θ θ θ= = = . In this case, most researches addressing 
the robust control of DT polytopic uncertain LTI systems 
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approximate ( , )d kA α θ  and ( , )d kB α θ  to their first-order 
power series with the assumption that the sampling period 
θ  is sufficiently small. However, when θ  is relatively 
large, the approximations become inaccurate. To alleviate 
this problem, the concept of the robust discretization was 
suggested in the previous work [18]. Roughly speaking, the 
robust discretization problem is finding approximations 

( )G α  and ( )H α  of matrices ( , )d kA α θ  and ( , )d kB α θ , 
respectively, such that both ( )G α  and ( )H α  preserve 
the polytopic structures of ( )cA α  and ( )cB α . In other 
words, it is required that the approximations can be 
expressed as convex combinations of given vertices. 
Specifically, a simplified robust discretization problem 
addressed in [18] can be expressed as finding matrices 

, , {1,2, , }i iG H i N∈ …  that solve the optimizations 
 

 

[ ]

, {1, 2, , }

[ ]

, {1, 2, , }

min max || ( , ) ( ) ||,

min max || ( , ) ( ) ||,
i N

i N

h
d kG i N

h
d kH i N

A G

B H
α

α

α θ α

α θ α
∈ ∈Δ

∈ ∈Δ

−

−

…

…

 

 
where  

 

 
1 1

( ) : , ( ) :
N N

i i i i
i i

G G H Hα α α α
= =

= =∑ ∑  

 
and 

 

 

[ ]

0

[ ] 1

1

( , ) : ( ) ,
!

( , ) : ( ) ( )
!

ih
h ik

d k c
i

ih
h ik

d k c c
i

A A
i

B A B
i

θ
α θ α

θ
α θ α α

=

−

=

=

=

∑

∑
 

 
are the h -order Taylor series approximations of matrices 

( , )d kA α θ  and ( , )d kB α θ , respectively. As mentioned in 
the introduction, the research in [18] only considered the 
case of the uniform sampling period. If the sampling period 
is time-varying within a known bound, the problem becomes 
more complicated. In this paper, we cope with the robust 
discretization problem under aperiodic sampling. The robust 
discretization problem considered in [18] is modified as 
follows.  

 
Problem (Robust discretization under aperiodic 

sampling). Let integer 1h ≥  be given. Compute matrices 
, , ( , ) {1, 2, , } {1,2}ij ijG H i j N∈ ×…  that solve the following 

optimizations:  
 

min max

[ ]

, ( , ) {1, 2, , } {1, 2} ,
[ , ]

min max || ( , ) ( , ) ||,
ij N

k

h
d k kG i j N

A G
α
θ θ θ

α θ α θ
∈ × ∈Δ

∈

−
…  (5) 

min max

[ ]

, ( , ) {1, 2, , } {1, 2} ,
[ , ]

min max || ( , ) ( , ) ||,
ij N

k

h
d k kH i j N

B H
α
θ θ θ

α θ α θ
∈ × ∈Δ

∈

−
…  (6) 

 
where  

 

 
2

1 1

( , ) : ( ) ,
N

k i j k ij
i j

G Gα θ α β θ
= =

= ∑∑   (7) 

 
2

1 1

( , ) : ( ) ,
N

k i j k ij
i j

H Hα θ α β θ
= =

= ∑∑   (8) 

 max min
1 2

max min max min

( ) : , ( ) : .k k
k k

θ θ θ θ
β θ β θ

θ θ θ θ
− −

= =
− −

 

 
Note that ( , )kG α θ  and ( , )kH α θ  depend on kθ  and 

have poyltopic structures with respect to kθ . 
 
 

3. Main Result 
 
In this section, LMI solutions to the robust discretization 

with aperiodic sampling are presented. As in [18], 
optimizations (5) and (6) can be rewritten by  

 

, ( , ) {1, 2, , } {1, 2}
min subject to

ij
AG i j N

γ
∈ ×…   (9) 

[ ] [ ]

min max

( ( , ) ( , )) ( ( , ) ( , )) ,
( , ) [ , ]

h T h
d k k d k k A n

k N

A G A G Iα θ α θ α θ α θ γ
α θ θ θ

− − ≤
∀ ∈Δ ×

 

, ( , ) {1, 2, , } {1, 2}
min subject to

ij
BH i j N

γ
∈ ×…   (10) 

[ ] [ ]

min max

( ( , ) ( , )) ( ( , ) ( , )) ,
( , ) [ , ]

h T h
d k k d k k B n

k N

B H B H Iα θ α θ α θ α θ γ
α θ θ θ

− − ≤

∀ ∈Δ ×
 

 
Alternative expressions are  

 

, ( , ) {1, 2, , } {1, 2}
min subject to

ij
AG i j N

γ
∈ ×…   (11) 

[ ] [ ]

min max

( ( , ) ( , ))( ( , ) ( , )) ,
( , ) [ , ]

h h T
d k k d k k A n

k N

A G A G Iα θ α θ α θ α θ γ
α θ θ θ

− − ≤

∀ ∈Δ ×
 

, ( , ) {1, 2, , } {1, 2}
min subject to

ij
BH i j N

γ
∈ ×…   (12) 

[ ] [ ]

min max

( ( , ) ( , ))( ( , ) ( , )) ,
( , ) [ , ]

h h T
d k k d k k B n

k N

B H B H Iα θ α θ α θ α θ γ
α θ θ θ

− − ≤
∀ ∈Δ ×

 

 
which are equivalent to (9) and (10), respectively. We will 
use expressions (11) and (12) rather than (9) and (10) since 
(11) and (12) are more suitable to be converted into LMI 
conditions. The following results can be viewed as the 
main results of this paper. They establish sufficient LMI 
conditions that ensure constraints (11) and (12).  

 
Theorem 1: Let 1h ≥  be given. If there exist matrices 

( 1), ( , ) {1,2, , } {1,2},n n n h nh
ijG i j N M× + ×∈ ∈ × ∈…  and a 

scalar 0Aγ ≥  such that 
 

 

[ 1] [ 1]
1 1

,

*
He{ ( )}

0,
1 1( )
1! !

( , ) {1, 2, , } {1, 2},

h h T
A n

T
h j c i h n

T
n ij n n n

e e I

M A I

I G I I I
h

i j N

γ

θ

+ +⎡ ⎤⎡ ⎤− ⊗
⎢ ⎥⎢ ⎥
+ ⊗ − ⊗⎢ ⎥⎢ ⎥⎣ ⎦ ≤⎢ ⎥
⎡ ⎤⎢ ⎥− −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∀ ∈ ×…

L R
  (13) 
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where 1 2 min max( , ) ( , )θ θ θ θ= , then constraint in (11) is 
satisfied.  

Proof. First of all, multiplying (13) by ( )i j kα β θ  and 
summing for ( , ) {1, 2, , } {1,2}i j N∈ ×… , we obtain  
 

 

[ 1] [ 1]
1 1

min max

*
He{ ( ( ) )} 0,

1 1( , )
1! !

( , ) [ , ],

h h T
A n

T
h c h n

T
n k n n n

N

e e I

M A I

I G I I I
h

γ

θ α

α θ

α θ θ θ

+ +⎡ ⎤⎡ ⎤− ⊗
⎢ ⎥⎢ ⎥
+ ⊗ − ⊗⎢ ⎥⎢ ⎥⎣ ⎦ ≤⎢ ⎥
⎡ ⎤⎢ ⎥− −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∀ ∈Δ ×

L R
 (14) 

 
where ( , )kG α θ  and ( , )kH α θ  are defined in (8). Applying 
the Schur complement to the above inequalities yields  

 

 

[ 1] [ 1]
1 1

min max

1 1( , )
1! !
1 1( , )
1! !

He{ ( ( ) )}
0, ( , ) [ , ]

h h T
A n

T
T

n k n n

T
n k n n

T
h c h n

N

e e I

I G I I
h

I G I I
h

M A I

γ

α θ

α θ

θ α
α θ θ θ

+ +− ⊗

⎡ ⎤+ −⎢ ⎥⎣ ⎦
⎡ ⎤× −⎢ ⎥⎣ ⎦

+ ⊗ − ⊗
≤ ∀ ∈Δ ×

L R

 

 
Pre- and post-multiplying the last inequality by [ ]h TΠ  

and its transpose, where  
 

 [ ] ( )
:

( ( ) )

n
T

ch

h h T
c

I
A

A

θ α

θ α

⎡ ⎤
⎢ ⎥
⎢ ⎥Π =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
and using relation [ ]( ( ) ) 0T h

h c h n nh nA Iθ α ×⊗ − ⊗ Π =L R , 
we can obtain the constraint in (11). This completes the 
proof.  □ 

Similarly to Theorem 1, an LMI condition that ensures 
constraint (12) can be obtained.  

 
Theorem 2: Let 1h ≥  be given. If there exist matrices 

( 1), ( , ) {1, 2, , } {1,2},n m n h nh
ijH i j N M× + ×∈ ∈ × ∈…  and a 

scalar 0Bγ ≥  such that 
 

[ 1] [ 1]
1 1

,

, , ,

*
He{ ( )}

0,

1! 2! ( 1)!

h h T
B n

T
h j c i h n

j j jT T T T
c i ij c i c i m

e e I

M A I

B H B B I
h

γ

θ

θ θ θ

+ +⎡ ⎤⎡ ⎤− ⊗
⎢ ⎥⎢ ⎥

+ ⊗ − ⊗⎢ ⎥⎢ ⎥⎣ ⎦ ≤⎢ ⎥
⎡ ⎤⎢ ⎥⎛ ⎞

− −⎢ ⎥⎜ ⎟⎢ ⎥+⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

L R
 

 ( , ) {1,2, , } {1,2}i j N∀ ∈ ×…   (15) 
 

where 1 2 min max( , ) ( , )θ θ θ θ= , then constraint (12) is 
satisfied.  

Proof. The proof is straightforwardly extended from the 
proof of Theorem 1 so omitted for brevity.  □ 

In this regard, the optimizations in (11) and (12) can be 
replaced by the following optimizations subject to LMI 
constraints:  

 

 , ( , ) {1, 2, , } {1, 2},
min subject to LMIs in (13)

ij
AG i j N M

γ
∈ ×…   (16) 

 , ( , ) {1, 2, , } {1, 2},
min subject to LMIsin (15)

ij
BH i j N M

γ
∈ ×…   (17) 

 
Remark. Optimizations (16) and (17) are single-

parameter minimization problems subject to LMI constraints, 
and hence, can be solved by means of a sequence of LMI 
optimizations, i.e. a line search or a bisection process 
over Aγ  and Bγ , respectively, or solved by the eigenvalue 
problem (EVP) [2], which is convex optimization, and 
hence, can be directly treated with LMI solvers [12, 21, 
26]. 

 
 

4. Application 
 
Although the proposed strategy provides only approximate 

solutions to the robust discretization problem with aperiodic 
sampling, it may be at least more precise than the first-
order Taylor series approximation. Moreover, the proposed 
technique would be effective from the practical point of 
view since as stated in [18], once a discretized model of a 
CT system is obtained, then it can be stored in database and 
used repeatedly for various SD control design purposes 
through existing LMI-based DT control design techniques 
(e.g., [5-7, 9] to name a few) in the literature. For instance, 
let us assume that matrices , , ( , )n n n n

ij ijG H i j× ×∈ ∈  
{1, 2, , } {1, 2}N∈ ×…  are solutions to optimizations (16) 

and (17), respectively. Instead of considering exact 
discretization (4) of the original CT system (3), consider 
the following DT system which is an approximate 
discretization of (3) under aperiodic sampling:  

 
 ( 1) ( , ) ( ) ( , ) ( ),k kk G k H kξ α θ ξ α θ π+ = +   (18) 

 
where ( ) nkξ ∈  is the state and ( ) mkπ ∈  is the 
control input. Note that DT system (18) can be viewed as 
an approximate DT model of the exact DT model (4). In 
addition, let us consider the following state-feedback 
control law:  
 
 ( ) ( ).k F kπ ξ=  

 
The closed-loop system is  
 

 ( 1) ( ( , ) ( , ) ) ( ).k kk G H F kξ α θ α θ ξ+ = +   (19) 
 
Based on the LMI design approach developed in [6], we 
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can readily establish the following LMI-based state-
feedback design condition.  

 
Proposition 1. If there exist matrices ,T n n

ij ijP P ×= ∈  
n nS ×∈ , and m nK ×∈  such that LMIs 

 

 
2

*
0,

{1, 2, , }, ( , ) {1,2}

ij
T

ij ij il

P
G S H K P S S

i N j l

−⎡ ⎤
<⎢ ⎥+ − −⎣ ⎦

∀ ∈ ∀ ∈…
  (20) 

 
hold, then state-feedback gain given by 1F KS −=  
stabilizes closed-loop system (19) for all Nα ∈Δ  and for 
all time-varying sampling period min max[ , ]kθ θ θ∈ .  

Proof. Multiplying (20) by 1( ) ( )i j k l kα β θ β θ +  and 
summing for 2( , , ) {1, 2, , } {1, 2}i j l N∈ ×… , we obtain 

 

 1

2
1 min max

( , ) *
0,

( , ) ( , ) ( , )

( , , ) [ , ] ,

k
T

k k k

k k N

P
G S H K P S S

α θ
α θ α θ α θ

α θ θ θ θ
+

+

−⎡ ⎤
<⎢ ⎥+ − −⎣ ⎦

∀ ∈Δ ×

 

 
where  
 

 
2

1 1
( , ) : ( )

N

k i j k ij
i j

P Pα θ α β θ
= =

= ∑∑  

 
and ( , )kG α θ  and ( , )kH α θ  are defined in (8). Next, by 
pre- and post-multiplying the last inequality by  
 

 
1

1

0
0

T

n n

n n

S
S

−
×
−

×

⎡ ⎤
⎢ ⎥
⎣ ⎦

  

 
and its transpose, and by applying the extended Schur 
complement in [6], it follows that  
 

 
1

2
1 min max

( ( , ) ( , ) ) ( , )
( ( , ) ( , ) ) ( , ) 0,

( , , ) [ , ]

T
k k k

k k k

k k N

G H F X
G H F X
α θ α θ α θ
α θ α θ α θ

α θ θ θ θ

+

+

+

× + − <

∀ ∈Δ ×

 

 
where 1F KS −= and 1( , ) ( , )T

k kX S P Sα θ α θ− −= . By means 
of the Lyapunov theory, one concludes that (19) is 
asymptotically stable for all Nα ∈Δ  and for all time-
varying sampling period min max[ , ]kθ θ θ∈ . This completes 
the proof.  □ 

On the other hand, let us consider the SD state-feedback 
controller 

 
 1( ) ( ) ( ), [ , ), ,c c k c k k ku t u t Fx t t t t k Z+ += = ∀ ∈ ∈   (21) 

 
for system (3). The closed-loop SD control system is  

 
1( ) ( ( ) ( ) ) ( ), [ , ), .c c c c k k kx t A B F x t t t t kα α + += + ∀ ∈ ∈  (22) 

If ( , ) ( , )k d kG Aα θ α θ=  and ( , ) ( , )k d kH Bα θ α θ=  
for all Nα ∈Δ  and min max[ , ]kθ θ θ∈ , then one can expect 
that || ( ) ( ) || 0, ,c k Nx t k kξ α+− = ∀ ∈ ∈Δ  is satisfied 
with (0) (0)cx ξ= and any control input sequence 
{ (0), (1), }π π … . Although the idealistic case may not occur 
in reality, we can still expect that if ( , ) ( , )k d kG Aα θ α θ≅  
and ( , ) ( , )k d kH Bα θ α θ≅ , then the solution ( )cx t  to (22) 
closely matches the solution ( )kξ  to (19) at every 
sampling instants 0 1{ , , }t t … . In this respect, the proposed 
robust discretization under aperiodic sampling can be 
viewed as a practically useful and simple approach to deal 
with various SD control problems.  

All numerical examples in the sequel were treated with 
the help of MATLAB R2012b running on a PC with Intel 
Core i7-3770 3.4GHz CPU, 32GB RAM. The LMI 
problems were solved with SeDuMi 1.3 [26] and Yalmip 
[21].  

 
Example 1. Let us consider the linearized model of the 

inverted pendulum system taken from [3]. Its state-space 
realization is given by  

 

 
,1

, 2

,3

, 4

0 1 0 0 0
0 0 / 0 1/

, ,
0 0 0 1 0
0 0 ( ) / ( ) 0 1/ ( )

( )
( )

( ) ,
( )
( )

c

c
c

c

c

mg M M
A B

M m g Ml Ml

x t
x t

x t
x t
x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
,1 ( )cx t  is the position of the cart, , 2 ,1( ) ( )c cx t x t= , 

,3 ( )cx t  is the angle of the pendulum from the vertical, 
, 4 ,3( ) ( )c cx t x t= , m  is the mass of the pendulum, M  is 

the mass of the cart, l  is the length of the pendulum, and 
( )cu t  is the horizontal force applied to the cart. We assume 

( , ) (8kg,1m)M l =  and [1kg,3kg]m∈ . Then, the system 
can be described by (1) with two vertices. By applying 
Theorems 1 and 2 with min max( , , ) (0.01s,0.1s,7)hθ θ = , we 
obtain the approximate DT system (18) with ( , )A Bγ γ =  

8( 0.1112,4.8251 10 )−×  and  
 

11

12

1 0.0297 0.0044 0.0031
0 0.9998 0.1024 0.0030

,
0 0.0016 1.0195 0.0089
0 0 0.4258 1.0083

1.0001 0.0741 0.0084 0.0001
0 0.9975 0.1603 0.0044

0.0001 0.0048 1.0417 0.0911
0.0001 0.0042 0.9338 1.0284

G

G

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

−⎡ ⎤
⎢ ⎥−⎢=
⎢−
⎢
−⎣ ⎦

,⎥
⎥
⎥
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21

22

1 0.0295 0.0047 0.0036
0 0.9998 0.1149 0.0047

,
0 0.0008 1.0201 0.0076
0 0.0006 0.4388 1.0091

0.9999 0.0756 0.0126 0.0046
0 1.0004 0.2841 0.0155

0.0002 0.0020 1.0463 0.0979
0 0.0002 1.0589 1.0455

G

G

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

− −⎡ ⎤
⎢ − −⎢=
⎢ −
⎢
⎣ ⎦

11 12

21 22

,

0 0.0005
0.0013 0.0125

, ,
0 0.0005

0.0013 0.0127

0 0.0005
0.0013 0.0126

, .
0 0.0005

0.0013 0.0127

H H

H H

⎥
⎥
⎥
⎥

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦

 

 
By using Proposition 1, the state-feedback gain is 

calculated as follows:  
 

 [37.8 79.5 1148.3 210.5].F =  
 
The simulation results with 0 [5 3 2 3]Tx = − −  and 

[0.5,0.5]Tα =  are depicted in Figs. 1(a)-(d), where ( )cx t  
(solid line) is the solution to the SD closed-loop system 
(22) and ( )kξ  at each sampling instant (dot) is the 
solution to the DT closed-loop system (19). In other words, 
the dotted lines in Figs. 1(a)-(d) can be viewed as the state 
trajectories ( )kξ  of the approximately discretized model 
of the original CT system (1) and the solid lines indicate 
the state trajectories ( )cx t  of the CT plant (1). The 
closeness of the two trajectories implies that the robust 
discretization approach proposed in this paper is an exact 
approximation of the exact discritization of the CT plant 

(1). From the figure, we confirm that the trajectory of 
( )kξ  closely matches the trajectory of ( )cx t  at sampling 

instants 0 1{ , , }t t … .  

 
Fig. 2. The solid line is the solution to the SD closed-loop 

system (22) xc,2(t) and the dotted line is the solution 
to the DT closed-loop system (19) 2 ( )kξ  at each 
sampling instant. 

 

 
Fig. 3. The solid line is the solution to the SD closed-loop 

system (22) xc,3(t) and the dotted line is the solution 
to the DT closed-loop system (19) 3 ( )kξ  at each 
sampling instant. 

 

 
Fig. 4. The solid line is the solution to the SD closed-loop 

system (22) xc,4(t) and the dotted line is the solution 
to the DT closed-loop system (19) 4 ( )kξ  at each 
sampling instant. 

 
Fig. 1. The solid line is the solution to the SD closed-loop 

system (22) xc,1(t) and the dotted line is the solution 
to the DT closed-loop system (19) 1( )kξ at each 
sampling instant. 
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5. Conclusion 
 
In this paper, our previous work on the robust 

discretization problem has been extended to deal with the 
same problem with aperiodic sampling. LMI conditions to 
compute approximate DT models of the original CT plants 
have been developed. Finally, an example has been given 
to illustrate the developed method. 
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