• 제목/요약/키워드: lignocellulosic materials

검색결과 58건 처리시간 0.025초

Hydrolysates of lignocellulosic materials for biohydrogen production

  • Chen, Rong;Wang, Yong-Zhong;Liao, Qiang;Zhu, Xun;Xu, Teng-Fei
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.244-251
    • /
    • 2013
  • Lignocellulosic materials are commonly used in bio-$H_2$ production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-$H_2$ production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to $H_2$ by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-$H_2$ production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.

목질바이오매스의 효소 당화 기술에 관한 연구 동향 (A Research Trend of Enzymatic Hydrolysis of Lignocellulosic Biomass : A Literature Review)

  • 김영숙
    • Journal of Forest and Environmental Science
    • /
    • 제26권2호
    • /
    • pp.137-148
    • /
    • 2010
  • The high costs for ethanol production with lignocellulosic biomass as a second generation energy materials currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into sugar that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of the enhancement of enzymatic hydrolysis for lignocellulosic biomass after pretreatment in bioethanol production process.

Bioethanol Production Using Lignocellulosic Biomass-review Part 2. Saccharification and fermentation of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • 펄프종이기술
    • /
    • 제42권5호
    • /
    • pp.15-23
    • /
    • 2010
  • Bio-ethanol is the most potential next generation automotive fuel for reducing both consumption of crude oil and environmental pollution from renewable resources such as wood, forest residuals, agricultural leftovers and urban wastes. Lignocellulosic based materials can be broken down into individual sugars. Therefore, saccharification is one of the important steps for producing sugars, such as 6-C glucose, galactose, mannose and 5-C xylose, mannose and rhamnose. These sugars can be further broken down and fermented into ethanol. The main objective of this research is to study the feasibility and optimize saccharification and fermentation process for the conversion of lignocellulosic biomass to low cost bioethanol.

Bioethanol Production Using Lignocellulosic Biomass - review Part I. Pretreatments of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • 펄프종이기술
    • /
    • 제42권5호
    • /
    • pp.1-14
    • /
    • 2010
  • Bio-ethanol is a promising alternative energy source for reducing both consumption of crude oil and environmental pollution from renewable resources like lignocellulosic biomass such as wood, forest residuals, agricultural leftovers and urban wastes. Based on current technologies, the cost of ethanol production from lignocellulosic materials is relatively high, and the main challenges are the low yield and high cost of the hydrolysis process. Development of more efficient pretreatment technology (physical, chemical, physico-chemical, and biological pretreatment), integration of several microbiological conversions into fewer reactors, and increasing ethanol production capacity may decrease specific investment for ethanol producing plants. The purpose of pretreatment of lignocellulosic material is to improve the accessible surface area of cellulose for hydrolytic enzymes and enhance the conversion of cellulose to glucose and finally high yield ethanol production which is economic and environmental friendly.

산업용지의 벌크 향상 및 건조에너지 절감을 위한 분말상 첨가제 제조기술 개발(II) - 맥주박과 팜잎 분말상 첨가제의 표면개질에 대한 연구 - (Development of New Powdered Additive and Its Application for Improving the Paperboard Bulk and Reducing Drying Energy (II) - Surface Modification of Brewers Grain(BG) and Oil Palm Frond(OPF) Powders with Cationic and Oxidized Starches -)

  • 이지영;김철환;김선영;김병호;임기백;김준식
    • 펄프종이기술
    • /
    • 제45권2호
    • /
    • pp.33-40
    • /
    • 2013
  • Powdered additive or organic filler is used to improve paperboard thickness and to reduce drying energy consumption in the Korean paperboard industry. In a previous study, we identified alternative non-lignocellulosic resources to wood powder, specifically brewers grain and oil palm frond powders, and verified that these materials had the same functionality as wood powder. The main drawback of the use of such additives, including both lignocellulosic and non-lignocellulosic resources, is the deterioration in paperboard strengths. Therefore, we carried out a basic study on the surface modification of brewers grain and oil palm frond powders to improve the strengths of paperboard. Surface modification was performed using various types of cationic and oxidized starches. The streaming current and zeta-potential of the two non-lignocellulosic powders were measured and CLSM images were taken to assess the surface modification.

대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究)(II) - 탈(脫)리그닌처리가 폭쇄처리재(爆碎處理材)의 효소적(酵素的) 당화(糖化)에 미치는 영향(影響) - (Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels (II) - The Effect of Delignification Treatment on the Enzymatic Hydrolysis of Steam - Exploded Woods -)

  • 조남석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권4호
    • /
    • pp.18-25
    • /
    • 1990
  • As polysaccharides in lignocellulosic materials are encrusted with aromatic lignin molecules and have high crystallinity, these require pretreatment to improve their digestability by cellulolytic enzymes. Though a number of pretreatment methods have been proposed, the steam explosion process is evaluated as a promising method. This study was performed to investigate the effect of delignification treatment by alkali, methanol and the others on the enzymatic hydrolysis. Delignification treatment resulted in great increase rate in enzymatic hydrolysis. Concerning to the effect of delignication reagents on the enzymatic hydrolysis, methanol treatment was more effective than alkali in the case of oak wood. In pine wood, the delignification did not showed any significant enhancement of hydrolysis rate. Complete delignification by Alkali-Oxygen. Alkali treatment showed high saccharification rate of 99.5%.

  • PDF

Bioconversion of Lignocellulose Materials

  • Pothiraj, C.;Kanmani, P.;Balaji, P.
    • Mycobiology
    • /
    • 제34권4호
    • /
    • pp.159-165
    • /
    • 2006
  • One of the most economically viable processes for the bioconversion of many lignocellulosic waste is represented by white rot fungi. Phanerochaete chrysosporium is one of the important commercially cultivated fungi which exhibit varying abilities to utilize different lignocellulosic as growth substrate. Examination of the lignocellulolytic enzyme profiles of the two organisms Phanerochaete chrysosporium and Rhizopus stolonifer show this diversity to be reflected in qualitative variation in the major enzymatic determinants (ie cellulase, xylanase, ligninase and etc) required for substrate bioconversion. For example P. chrysosporium which is cultivated on highly lignified substrates such as wood (or) sawdust, produces two extracellular enzymes which have associated with lignin deploymerization. (Mn peroxidase and lignin peroxidase). Conversely Rhizopus stolonifer which prefers high cellulose and low lignin containg substrates produce a family of cellulolytic enzymes including at least cellobiohydrolases and ${\beta}-glucosidases$, but very low level of recognized lignin degrading enzymes.

Preparation of Cellulose Acetate Produced from Lignocellulosic Biomass

  • Jo, Jong-Soo;Jung, Ji Young;Byun, Ji-Hye;Lim, Bu-Kug;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권2호
    • /
    • pp.241-252
    • /
    • 2016
  • Cellulose acetate is one of well-known industrial materials which have various commercial uses. We treated the lignocellulosic biomass using two-step (steam explosion-chemical) reaction followed by acetylation to get the cellulose acetate in this study. The two-step treatment was done to improve the yields of acetylation of the substrates. The yields of the cellulose acetate were about 88.4, 88.1, and 151.7% in barley straw, rice straw, and oak tree, respectively. Also the degree of substitution (DS) of the acetates was 2.1 to 2.5 in the biomass. We found that the biomass were valuable cellulosic sources, including their derivatives, in this study. This means that the biomass can be converted into the high-valued cellulosic stuff.

Bacillus subtilis가 함유된 목질계 인공토양의 물리·화학적 특성이 참싸리 생육에 미치는 영향 (Effects of the Physicochemical Properties of Lignocellulosic Artificial Soil Containing Bacillus subtilis on the Growth of Lespedeza cyrtobotrya)

  • Kim, Ji-Su;Jung, Ji young;Ha, Si Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.393-407
    • /
    • 2019
  • 본 연구에서는 Bacilluls subtilis가 함유된 목질계 인공토양(피트모스:펄라이트:폭쇄처리된 참나무:미생물제형=3:1:3:3, w/w/w/w)을 제조 하였으며, 이를 대조구토양과 0%, 25%, 50%, 75% 및 100% 비율로 혼합하여 참싸리 종자 파종 후 소규모 야외포트 현장적용 하였다. 현장적용에 따른 대조구토양, 혼합토양(대조구토양+인공토양) 및 인공토양의 물리 화학적 특성을 분석하였고 참싸리 줄기 및 뿌리생장을 비교하였다. 혼합토양에서는 $0.04g/cm^3$ 이하의 용적밀도, 85 % 이상의 공극률, pH 4.3 - 4.7, 0.5 dS/m 이하의 전기전도도, 15.0 - 26.5의 탄질비, 23.6% - 43.2%의 유기물 함량 및 $157{\times}10^6CFU/g-624{\times}10^6CFU/g$의 미생물밀도를 나타냈다. 인공토양이 25% 및 50% 함유된 혼합토양에서는 참싸리 줄기 및 뿌리생장이 대조구토양보다 높게 나타났고 참싸리의 생장에 영향을 미치는 토양 인자는 용적밀도, 공극률, 수분보유력, 탄질비, 유기물함량 및 미생물함량으로 나타났다.