Bioethanol Production Using Lignocellulosic Biomass-review Part 2. Saccharification and fermentation of biomass for generating ethanol

  • Received : 2010.11.02
  • Accepted : 2010.12.10
  • Published : 2010.12.30

Abstract

Bio-ethanol is the most potential next generation automotive fuel for reducing both consumption of crude oil and environmental pollution from renewable resources such as wood, forest residuals, agricultural leftovers and urban wastes. Lignocellulosic based materials can be broken down into individual sugars. Therefore, saccharification is one of the important steps for producing sugars, such as 6-C glucose, galactose, mannose and 5-C xylose, mannose and rhamnose. These sugars can be further broken down and fermented into ethanol. The main objective of this research is to study the feasibility and optimize saccharification and fermentation process for the conversion of lignocellulosic biomass to low cost bioethanol.

Keywords

References

  1. Yu, Z. and Zhang, H., Ethanol fermentation of acid-hydrolyzed cellulosic pryolysate with, Bioresource Technology. 93:199-204 (2004). https://doi.org/10.1016/j.biortech.2003.09.016
  2. Sheoran, A., Yadav, B.S., Nigam, P. and Singh, D., Continuous ethanol production from sugarcane molasses using a column reactor of immobilized S. cerevisiae HAU-1, Journal of Basic Microbiology. 38:123-128 (1998). https://doi.org/10.1002/(SICI)1521-4028(199805)38:2<123::AID-JOBM123>3.0.CO;2-9
  3. Mooney, C. A., Mansfield, S. D., Touhy, M. G. and Saddler, J. N., The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods, Bioresource Technology. 64(2):113-119 (1998). https://doi.org/10.1016/S0960-8524(97)00181-8
  4. Chernoglazov, V. M., Ermolova, O. V. and Klyosov, A. A., Enzyme and Microbial Technology. 10:503-507 (1988). https://doi.org/10.1016/0141-0229(88)90029-4
  5. Converse, A. O., Ooshima, H. and Burns, D. S., Applied Biochemistry and Biotechnology. 24-25:67-73 (1990). https://doi.org/10.1007/BF02920234
  6. Sewalt, V. J. H., Glasser, W. J. and Beauchemin, K. A., Journal of Agricultural and Food Chemistry. 45:1823-1828 (1997). https://doi.org/10.1021/jf9608074
  7. Pan, X., Xie, D., Gilkes, N., Gregg, D. J. and Saddler, J. N., Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content, Applied Biochemistry and Biotechnology. 121-124:1069-1079 (2005).
  8. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S. and Saddler, S.J., Inhibition of cellulase, xylanase and $\beta$-glucosidase activities by softwood lignin preparations, Journal of Biotechnology. 125:198-209 (2006). https://doi.org/10.1016/j.jbiotec.2006.02.021
  9. Palonen, H., Tjerneld, F., Zacchi, G. and Tenkanen, M., Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin, Journal of Biotechnology. 107:65-72 (2004). https://doi.org/10.1016/j.jbiotec.2003.09.011
  10. Zhang, Y.H. and Lynd, L.R., Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems, Biotechnol Bioeng. 88:797-824 (2004). https://doi.org/10.1002/bit.20282
  11. Wyman, C.E., Ethanol from lignocellulosic biomass: technology, economics, and opportunities, Bioresour Technol. 50:3-15 (1994). https://doi.org/10.1016/0960-8524(94)90214-3
  12. Hamelinck, C.N., van Hooijdonk, G. and Faaij, A.P.C., Ethanol from lignocellulosic biomass: techno- economic performance in short-, middle- and long-term, Biomass Bioenergy. 28:384-410 (2005). https://doi.org/10.1016/j.biombioe.2004.09.002
  13. Demirbas, A., Ethanol from cellulosic biomass resources, Int J Green Ener. 1:79-87 (2004). https://doi.org/10.1081/GE-120027885
  14. Demirbas, A., Bioethanol from cellulosic materials: a renewable motor fuel from biomass, Energy Sources. 27:327-337 (2005). https://doi.org/10.1080/00908310390266643
  15. Saeman, J.F., Ind. Eng. Chem. 37 (1):43 (1945). DOI: 10.1021/ie50421a009
  16. Rodriguez-Chong, A., Ramirez, J. A., Garrote, G. and Vazquez, M., J. Food Eng. 61:143 (2004). DOI: 10.1016/S0260-8774 (03)00080-3
  17. Graf, A. and Koehler, T., Oregon cellulose-ethanol study: an evaluation of the potential for ethanol production in Oregon using cellulose based feedstocks. Salem, Oregon, USA: Oregon Dept of Energy, p:96 (2000) [Cited; available from: /www.ethanol-gec. org/information/briefing/20aS].
  18. Badger, P.C., Ethanol from cellulose: a general review, In: Janick J, Whipkey A, editors. Trends in new crops and new uses, Alexandria, VA: ASHS Press, pp:17-21 (2002).
  19. Farone, W. A. and Cuzens, J.E., US Pat. 5, 562, 777 (1996).
  20. Jeffries, T.W. and Jin, Y.S., Ethanol and thermotol erance in the bioconversion of xylose by yeasts, Adv Appl Microbiol. 47:221-68 (2000). https://doi.org/10.1016/S0065-2164(00)47006-1
  21. Beguin, P. and Aubert, J.P., The biological degradation of cellulose, FEMS Microbiol. Rev. 13:25-58 (1994). https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  22. Pan, X., Gilkes, N. and Saddler, J.N., Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates, Holzforschung. 60:398-401 (2006). https://doi.org/10.1515/HF.2006.062
  23. Sternberg, D., Production of cellulase by Trichoderma, Biotechnol. Bioeng. Symp. pp.35-53 (1976).
  24. Fan, L.T., Gharpuray, M.M. and Lee, Y.H., Cellulose Hydrolysis, Biotechnology Monographs. Springer, Berlin, p.57 (1987).
  25. Duff, S.J.B. and Murray, W.D., Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review, Bioresour. Technol. 55:1-33 (1996). https://doi.org/10.1016/0960-8524(95)00122-0
  26. Gusakov, V., Salanovich, T.N., Antonov, A.I., Ustinov, B.B., Okunev, O.N. and Burlingame, R., Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose, Biotechnol Bioeng. 97:1028-38 (2007). https://doi.org/10.1002/bit.21329
  27. Pan, X., Arato, C., Gilk, N., Gregg, D., Mabee, W. and Pye, K.l., Biroefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel grade ethanol and co-products, Biotechnol Bioeng. 90:473-81 (2005). https://doi.org/10.1002/bit.20453
  28. Krassig, H.A., Cellulose: Structure, accessibility, and reactivity, Gordon and Breach Science Publishers S.A. 6-13:187-205 (1993).
  29. Chandel, A.K., Es, C., Rudravaram, R., Narasu, M.L., Rao, L.V. and Ravindra, P., Economics and environmental impact of bioethanol production technologies: an appraisal, Biotechnol Molec Biol Rev. 2:14-32 (2007).
  30. Chen, H. and Jin, S., Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose, Enzyme Microb Technol. 39:1430-1432 (2006). https://doi.org/10.1016/j.enzmictec.2006.03.027
  31. Saha, B.C. and Cotta, M.A., Ethanol production from alkaline peroxide pretreated enzymatically saccharifi ed wheat straw, Biotechnology Progress. 22:449-453 (2006). https://doi.org/10.1021/bp050310r
  32. Farid, T., Dimitar, K. and Irini, A., Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation, Bioresource Technology. 101:4744-4753 (2010). https://doi.org/10.1016/j.biortech.2009.11.080
  33. Krishna, S.H., Reddy, T.J. and Chowdary, G.V., Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast, Bioresource Technology. 77(2):193-196 (2001). https://doi.org/10.1016/S0960-8524(00)00151-6
  34. Ohgren, K., Bura, R., Lesnicki, G., Saddler, J. and Zacchi, G., A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover, Process Biochemistry. 42:834-839 (2007). https://doi.org/10.1016/j.procbio.2007.02.003
  35. Sun, Y. and Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technol. 83:1-11 (2002). https://doi.org/10.1016/S0960-8524(01)00212-7
  36. Huang, L.P, Jin, B., Lant, P. and Zhou, J., Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus, Biochem Eng J. 23:265-276 (2005). https://doi.org/10.1016/j.bej.2005.01.009
  37. Wright, J.D., Ethanol from lignocellulosics: an overview, Energy Progress. 84:71-80 (1988).
  38. Cantwell, B.A., Sharp, P.M., Gormley, E. and Mcconnell, D.J., Molecular cloning of bacillus $\beta$-glucanases. In: Aubert, J.P., Beguin, P., Millet, J. (Eds.), Biochemistry and Genetics of Cellulose Degradation. Academic Press, San Diego, CA, pp:181-201 (1988).
  39. Durand, H., Baron, M., Calmels, T. and Tiraby, G., Classical and molecular genetics applied to T. reesei for the selection of improved cellulolytic industrial strains. In: Aubert, J.P., Beguin, P., Millet, J. (Eds.), Biochemistry and Genetics of Cellulose Degradation. Academic Press, San Diego, CA, pp:135–151 (1988).
  40. Lynd, L.R., Zyl, W.H., McBride, J. E., Laser, M. and Strobel, M., Cellulose conversion by consolidated bioprocessing, Curr. Opin. Biotechnol. 16:577-583 (2005). DOI: 10.1016/j.copbio.2005.08.009
  41. Orpin, C.G., Genetic approaches to the improvement of lignocellulose degradation in the rumen. In: Aubert, J.P., Beguin, P., Millet, J. (Eds.), Biochemistry and Genetics of Cellulose Degradation. Academic Press, London, pp:171–179 (1988).
  42. Cheung, S.W. and Anderson, B.C., Laboratory investigation of ethanol production from municipal primary wastewater, Bioresour. Technol. 59:81-96 (1997). https://doi.org/10.1016/S0960-8524(96)00109-5
  43. Huang, X.L. and Penner, M.H., Apparent substrate inhibition of the T. reesei cellulase system, J. Agric. Food Chem. 39:2096-2100 (1991). https://doi.org/10.1021/jf00011a042
  44. Penner, M.H. and Liaw, E.T., Kinetic consequences of high ratios of substrate to enzyme saccharification systems based on Trichoderma cellulase. In: Himmel, M.E., Baker, J.O., Overend, R.P. (Eds.), Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Washington, DC, pp:363-371 (1994).
  45. McMillan, J.D., Pretreatment of lignocellulosic biomass, In Enzymatic Conversion of Biomass for Fuels Production; Himmel, M.E., Baker, J.O., Overend, R.P., Eds.; ACS: Washington DC, USA, pp.292-324 (1994).
  46. Gregg, D.J. and Saddler, J.N., Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process, Biotechnol. Bioeng. 51:375-383 (1996). https://doi.org/10.1002/(SICI)1097-0290(19960820)51:4<375::AID-BIT1>3.3.CO;2-G
  47. Wu, J. and Ju, L.K., Enhancing enzymatic saccharification of waste newsprint by surfactant addition, Biotechnol. Prog. 14:649-652 (1998). https://doi.org/10.1021/bp980040v
  48. Park, J.W., Takahata, Y., Kajiuchi, T. and Akehata, T., Effects of nonionic surfactant on enzymatic hydrolysis of used newspaper, Biotechnol. Bioeng. 39:117-120 (1992). https://doi.org/10.1002/bit.260390117
  49. Ooshima, H., Sakata, M. and Harano, Y., Enhancement of enzymatic hydrolysis of cellulose by surfactant, Biotechnol. Bioeng. 28:1727-1734 (1986). https://doi.org/10.1002/bit.260281117
  50. Helle, S.S., Duff, S.J.B. and Cooper, D.G., Effect of surfactants on cellulose hydrolysis, Biotechnol. Bioeng. 42:611-617 (1993). https://doi.org/10.1002/bit.260420509
  51. Mes-Hartree, M., Hogan, C.M. and Saddler, J.N., Recycle of enzymes and substrate following enzymatic hydrolysis of steam pretreated aspen wood, Biotechnol. Bioeng. 30:558-564 (1987). https://doi.org/10.1002/bit.260300413
  52. Lynd, L.R., Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy, Annu Rev Energy Env, 21:403-465 (1996). https://doi.org/10.1146/annurev.energy.21.1.403