Bioethanol Production Using Lignocellulosic Biomass - review Part I. Pretreatments of biomass for generating ethanol

  • Received : 2010.11.02
  • Accepted : 2010.12.10
  • Published : 2010.12.30

Abstract

Bio-ethanol is a promising alternative energy source for reducing both consumption of crude oil and environmental pollution from renewable resources like lignocellulosic biomass such as wood, forest residuals, agricultural leftovers and urban wastes. Based on current technologies, the cost of ethanol production from lignocellulosic materials is relatively high, and the main challenges are the low yield and high cost of the hydrolysis process. Development of more efficient pretreatment technology (physical, chemical, physico-chemical, and biological pretreatment), integration of several microbiological conversions into fewer reactors, and increasing ethanol production capacity may decrease specific investment for ethanol producing plants. The purpose of pretreatment of lignocellulosic material is to improve the accessible surface area of cellulose for hydrolytic enzymes and enhance the conversion of cellulose to glucose and finally high yield ethanol production which is economic and environmental friendly.

Keywords

References

  1. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G. and Zacchi, G., Bioethanol-the fuel of tomorrow from residues of today, Trends Biotechnol. 24:549-556 (2006). https://doi.org/10.1016/j.tibtech.2006.10.004
  2. Goldemberg, J., World Energy Assessment, United Nations Development Programme, New York NY USA, p.135-171 (2000).
  3. Williams, R.H., Larson, E.D., Katofsky, R.E. and Chen, J., Methanol and hydrogen from biomass for transportation, with comparisons to methanol and hydrogen from natural gas and coal, PU/ CEES Report 292, Princeton University/Center for Energy and Environmental Studies, Princeton, NJ, USA, p.47 (1995).
  4. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M. and Ladisch, M., Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technol. 96:673-686 (2005). https://doi.org/10.1016/j.biortech.2004.06.025
  5. Yat, S. C., Berger, A. and Shonnard, D. R., Kinetic characterization of dilute surface acid hydrolysis of timber varieties and switchgrass, Bioresour Technol. 99:3855-3863 (2008). https://doi.org/10.1016/j.biortech.2007.06.046
  6. Prasad, S., Singh, A. and Joshia, H.C., Ethanol as an alternative fuel from agricultural, industrial and urban residues, Resour Conserv Recycli. 50:1-39 (2007). https://doi.org/10.1016/j.resconrec.2006.05.007
  7. Aristidou, A. and Penttila, M., Metabolic engineering application to renewable resources utilization, Curr Opin Biotechnol. 11:187-198 (2000). https://doi.org/10.1016/S0958-1669(00)00085-9
  8. Wyman, C.E., Biomass ethanol: technical progress, opportunities and commercial challenges, Annu. Rev. Energy Enivorn. 24:189-226 (1999). https://doi.org/10.1146/annurev.energy.24.1.189
  9. Lynd, L.R., Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy, Annu Rev Energy Env. 21:403-465 (1996). https://doi.org/10.1146/annurev.energy.21.1.403
  10. Solomon B. D., Barnes, J. R. and Halvorsen, K. E., Grain and cellulosic ethanol: History, economics, and energy policy, Biomass Bioenergy. 31:416-425 (2007). https://doi.org/10.1016/j.biombioe.2007.01.023
  11. Demirbas, A., Progress and recent trends in biofuels, Prog Energy Combust Sci. 33:1-18 (2007). https://doi.org/10.1016/j.pecs.2006.06.001
  12. Diana, A. and Alejandro, A., Ethanol from lignocellulosic biomass, Cien. Inv. Agr. 36(2):177-190 (2009).
  13. Andy Aden, P.E., Biomass and Biofuels: Technology and Economic Overview, NREL/PR. 510-41793 (2007).
  14. Schneider, U.A. and McCar, B.A., Economic potential of biomass based fuels for greenhouse gas emission mitigation, J. Environ. Resour. Economics. 24(4): 291-312 (2003). https://doi.org/10.1023/A:1023632309097
  15. Gray, K.A., Zhao, L. and Emptage, M., Bioethanol, Curr. Opin. Chem. Biol. 10:141-146 (2006). https://doi.org/10.1016/j.cbpa.2006.02.035
  16. Taherzadeh, M. J. and Keikhosro, K., Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production, Int. J. Mol. Sci. 9:1621-1651 (2008). DOI: 10.3390/ijms9091621.
  17. Hsu, T.A., Ladisch, M.R. and Tsao, G.T., Alcohol from cellulose, Chemical Technology. 10(5):315-319 (1980).
  18. Fengel, D. and Wegener, G., Wood Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin (1984).
  19. Sjostrom, E., Wood Chemistry, 2nd ed.; Academic Press, New York, p.293 (1999).
  20. Sun, Y. and Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technol. 83:1-11 (2002). https://doi.org/10.1016/S0960-8524(01)00212-7
  21. Francesco Cherubini & Gerfried Jungmeier., LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass, Int J Life Cycle Assess. 15:53-66 (2010). DOI 10.1007/s 11367-009-0124-2
  22. Wyman, C.E., Handbook on bioethanol: production and utilization; Taylor & Francis, Washington DC, USA, (1996).
  23. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S. and Saddler, J., Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations, J. Biotechnol. 125:198-209 (2006). https://doi.org/10.1016/j.jbiotec.2006.02.021
  24. Karimi, K., Kheradmandinia, S. and Taherzadeh, M.J., Conversion of rice straw to sugars by dilute acid hydrolysis, Biomass Bioenerg. 30:247-253 (2006). https://doi.org/10.1016/j.biombioe.2005.11.015
  25. Sanchez, G., Pilcher, L., Roslander, C., Modig, T., Galbe, M. and Liden, G., Dilute acid hydrolysis for fermentation of the Bolivian straw material Paja Brava, Bioresource Technol. 93:249-256 (2004). https://doi.org/10.1016/j.biortech.2003.11.003
  26. Schell, D.J., Farmer, J., Newman, M. and McMillan, J.D., Dilute-sulfuric acid pretreatment of corn stover in pilot scale reactor: Investigation of yields, kinetics, and enzymatic digestibilities of solids, Appl. Biochem. Biotechnol. 105:69-85 (2003). https://doi.org/10.1385/ABAB:105:1-3:69
  27. Tucker, M.P., Kim, K.H., Newman, M.M. and Nguyen, Q.A., Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility, Appl. Biochem. Biotechnol. 105:165-177 (2003). https://doi.org/10.1385/ABAB:105:1-3:165
  28. Nguyen, Q.A., Tucker, M.P., Keller, F.A. and Eddy, F.P., Two-stage dilute-acid pretreatment of softwoods, Appl. Biochem. Biotechnol. 84-86: 561-576 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:561
  29. Lee, Y.Y., Iyer, P. and Torget, R.W., Dilute-acid hydrolysis of lignocellulosic biomass, Adv. Biochem. Eng. Biotechnol. 65:93-115 (1999).
  30. Barl, B., Biliaderis, C.G., Murray, E.D. and Macgregor, A.W., Combined chemical and enzymatic treatments of corn husk lignocellulosics, J. Sci. Food Agric. 56:195-214 (1991). https://doi.org/10.1002/jsfa.2740560209
  31. Arato, C., Pye, E.K. and Gjennestad, G., The lignol approach to biorefining of woody biomass to produce ethanol and chemicals, Appl. Biochem. Biotechnol. 123:871-882 (2005). https://doi.org/10.1385/ABAB:123:1-3:0871
  32. Sidiras, D. and Koukios, E., Simulation of acid-catalyzed organosolv fractionation of wheat straw, Bioresource Technol. 94:91-98 (2004). https://doi.org/10.1016/j.biortech.2003.10.029
  33. Alizadeh, H., Teymouri, F., Gilbert, T.I. and Dale, B.E., Pretreatment of switchgrass by ammonia fiber explosion (AFEX), Appl. Biochem. Biotechnol. 124: 1133-1141 (2005). https://doi.org/10.1385/ABAB:124:1-3:1133
  34. Vlasenko, E.Y., Ding, H., Labavitch, J.M. and Shoemaker, S.P., Enzymatic hydrolysis of pretreated rice straw, Bioresource Technol. 59:109-119 (1997). https://doi.org/10.1016/S0960-8524(96)00169-1
  35. Dale, B.E., Leong, C.K., Pham, T.K., Esquivel, V.M., Rios, I. and Latimer, V.M., Hydrolysis of lignocellulosics at low enzymes level: application of the AFEX process, Bioresource Technol. 56:111-116 (1996). https://doi.org/10.1016/0960-8524(95)00183-2
  36. Holtzapple, M.T., Jun, J.H., Ashok, G., Patibandla, S.L. and Dale, B.E., The ammonia freeze explosion (AFEX) process - A practical lignocellulose pretreatment, Appl. Biochem. Biotechnol. 28:59-74 (1991). https://doi.org/10.1007/BF02922589
  37. Ballesteros, I., Oliva, J.M., Navarro, A.A., Gonzalez, A., Carrasco, J. and Ballesteros, M., Effect of chip size on steam explosion pretreatment of softwood, Appl. Biochem. Biotechnol. 84:97-110 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:97
  38. Ogier, J.C., Ballerini, D., Leygue, J.P., Rigal, L. and Pourquie, J., Ethanol production from lignocellulosic biomass, Oil Gas Sci. Technol. 54:67-94 (1999). https://doi.org/10.2516/ogst:1999004
  39. Boussaid, A., Robinson, J., Cai, Y.J., Gregg, D.J. and Saddler, J.R., Fermentability of the hemicellulosederived sugars from steam-exploded softwood (Douglas fir), Biotechnol. Bioeng. 64:284-289 (1999). https://doi.org/10.1002/(SICI)1097-0290(19990805)64:3<284::AID-BIT4>3.0.CO;2-C
  40. Sassner, P., Galbe, M. and Zacchi, G., Steam pretreatment of Salix with and without $SO_{2}$ impregnation for production of bioethanol, Appl. Biochem. Biotechnol. 121:1101-1117 (2005).
  41. Ohgren, K., Galbe, M. and Zacchi, G., Optimization of steam pretreatment of $SO_{2}-impregnated$ corn stover for fuel ethanol production, Appl. Biochem. Biotechnol. 121:1055-1067 (2005).
  42. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E. and Hahn-Hagerdal, B., Comparison of $SO_{2}$ and $H_{2}SO_{4}$ impregnation of softwood prior to steam pretreatment on ethanol production, Appl. Biochem. Biotechnol. 70:3-15 (1998). https://doi.org/10.1007/BF02920119
  43. Eklund, R., Galbe, M. and Zacchi, G., The influence of $SO_{2}$ and $H_{2}SO_{4}$ impregnation of willow prior to steam pretreatment, Bioresource Technol. 52:225-229(1995). https://doi.org/10.1016/0960-8524(95)00042-D
  44. Stenberg, K., Tengborg, C., Galbe, M. and Zacchi, G., Optimization of steam pretreatment of $SO_{2}$- impregnated mixed softwoods for ethanol production, J. Chem. Technol. Biotechnol. 71:299-308 (1998). https://doi.org/10.1002/(SICI)1097-4660(199804)71:4<299::AID-JCTB858>3.0.CO;2-Z
  45. Fan, L., Lee, Y. and Gharpuray, M., The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis, Adv. Biochem. Eng. Biotechnol. 23:158-183 (1982).
  46. Millet, M.A., Baker, A.J. and Scatter, L.D., Physical and chemical pretreatment for enhancing cellulose saccharification, Biotech. Bioeng. Symp. 6:125-153 (1976).
  47. Kilzer, F. J. and Broido, A., Speculations on the nature of cellulose pyrolysis, Pyrodynamics. 2:151-163 (1965).
  48. Shafizadeh, F. and Bradbury, A. G. W., Thermal degradation of cellulose in air and nitrogen at low temperatures, J. Appl. Polym. Sci. 23:1431-1442 (1979). https://doi.org/10.1002/app.1979.070230513
  49. Ehara, K. and Saka, S., A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water, Cellulose. 9: 301-311 (2002). https://doi.org/10.1023/A:1021192711007
  50. Shafizadeh, F. and Lai, Y. Z., Thermal degradation of 2-deoxy-Darabino- hexonic acid and 3-deoxy-D-ribohexono- 1,4-lactone, Carbohyd. Res. 42:39-53 (1975). https://doi.org/10.1016/S0008-6215(00)84098-7
  51. Alvira, P., Tomas-Pejo, E., Ballesteros, M. and Negro, M.J., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresource Technology. 101: 4851-4861 (2010). https://doi.org/10.1016/j.biortech.2009.11.093
  52. Vidal, P.F. and Molinier, J., Ozonolysis of lignin improvement of in vitro digestibility of poplar sawdust, Biomass. 16:1-17 (1988). https://doi.org/10.1016/0144-4565(88)90012-1
  53. Quesada, J., Rubio, M. and Gomez, D., Ozonation of Lignin Rich Solid Fractions from Corn Stalks, J. Wood Chem. Technol. 19:115-137 (1999). https://doi.org/10.1080/02773819909349603
  54. Neely, W.C., Factors affecting the pretreatment of biomass with gaseous ozone, Biotechnol. Bioeng. 26:59-65 (1984). https://doi.org/10.1002/bit.260260112
  55. Taherzadeh, M.J. and Karimi, K., Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review, BioResources, 2:472-499 (2007).
  56. Sivers, M.V. and Zacchi, G., A techno-economical comparison of three processes for the production of ethanol from pine, Bioresour. Technol. 51:43-52 (1995). https://doi.org/10.1016/0960-8524(94)00094-H
  57. Converse, A.O., Warteng, I.K., Grethlein, H.E. and Ooshima, H., Kinetics of thermochemical pretreatment of lignocellulosic materials, Appl. Biochem. Biotechnol. 20/21:63-78 (1989). https://doi.org/10.1007/BF02936473
  58. Esteghlalian, A., Hashimoto, A.G., Fenske, J.J. and Penner, M.H., Modeling and optimization of the dilute sulfuric-acid-pretreatment of corn stover, poplar and switchgrass, Bioresour Technol. 59:129-36 (1997). https://doi.org/10.1016/S0960-8524(97)81606-9
  59. Taherzadeh, M.J. and Karimi, K., Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: A review, Bio Resources. 2:707-738 (2007).
  60. Elshafei, A.M., Vega, J.L., Klasson, K.T., Clausen, E.C. and Gaddy, J.L., The saccharification of corn stover by cellulase from Penicillin funiculosum, Bioresour. Technol. 35:73-80 (1991). https://doi.org/10.1016/0960-8524(91)90084-W
  61. Soto, M.L., Dominguez, H., Nunez, M.J. and Lema, J.M., Enzymatic saccharification of alkali-treated sunflower hulls, Bioresour. Technol. 49:53-59 (1994). https://doi.org/10.1016/0960-8524(94)90173-2
  62. Fox, D.J., Gray, P. P., Dunn, N. W. and Warwick, L. M., Comparison of alkali and steam (acid) pretreatments of lignocellulosic materials to increase enzymatic susceptibility: Evaluation under optimized pretreatment conditions, J. Chem. Tech. Biotech. 44:135-146 (1989).
  63. MacDonald, D.G., Bakhshi, N.N., Mathews, J.F., Roychowdhury, A., Bajpai, P. and Moo-Young, M., Alkali treatment of corn stover to improve sugar production by enzymatic hydrolysis, Biotechnol. Bioeng. 25:2067-2076 (1983). https://doi.org/10.1002/bit.260250815
  64. Chang, V.S., Burr, B. and Holtzapple, M.T., Lime pretreatment of switchgrass, Applied Biochemistry and Biotechnology. 63-65:3-19 (1997). https://doi.org/10.1007/BF02920408
  65. Playne, M.J., Increased digestibility of bagasse by pretreatment with alkalis and steam explosion, Biotechnology and Bioengineering. 26(5):426-433 (1984). https://doi.org/10.1002/bit.260260505
  66. Mustafa, B., Havva, B. and Cahide, Oz., Progress in bioethanol processing, Progress in Energy and Combustion Science. 34:551-573 (2008). https://doi.org/10.1016/j.pecs.2007.11.001
  67. Azzam, M., Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation, J. EnViron. Sci. Health B. 24(4):421-433. (1989). https://doi.org/10.1080/03601238909372658
  68. Hon, D.N.S. and Shiraishi, N., Wood and Cellulosic Chemistry, second ed. Marcel Dekker, New York, p.914 (2001).
  69. Chang, V.S., Nagwani, M., Kim, C.H. and Holtzapple, M.T., Oxidative lime pretreatment of high-lignin biomass, Applied Biochemistry and Biotechnology. 94:1-28 (2001). https://doi.org/10.1385/ABAB:94:1:01
  70. Botello, J.I., Gilarranz, M. A., Rodriguez, F. and Oliet, M., Preliminary study on products distribution in alcohol pulping of Eucalyptus globules, J. Chem. Technol. Biotechnol. 74:141-148 (1999). https://doi.org/10.1002/(SICI)1097-4660(199902)74:2<141::AID-JCTB1>3.0.CO;2-0
  71. Chum, H.L., Johnson, D.K. and Black, S., Organosolv pretreatment for enzymatic hydrolysis of poplars: 1. Enzyme hydrolysis of cellulosic residues, Biotechnol. Bioeng. 31:643-649 (1988). https://doi.org/10.1002/bit.260310703
  72. Thring, R. W., Chorent, E. and Overend, R., Recovery of a solvolytic lignin: Effects of spent liquor acid volume ratio, acid concentration and temperature, Biomass. 23:289-305 (1990). https://doi.org/10.1016/0144-4565(90)90038-L
  73. Sarkanen, K. V., Acid-catalyzed delignification of lignocellulosics in organic solvents, Prog. Biomass ConVers. 2:127-144 (1980).
  74. Araque, E., Parra, C., Freer, J., Contreras, D., Rodriguez, J., Mendonca, R. and Baeza, J., Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol, Enzyme Microb. Tech. 43:214-219 (2007).
  75. Hayes, D.J., An examination of biorefining processes, catalysts and challenges, Catal. Today. 145:138-151 (2009). https://doi.org/10.1016/j.cattod.2008.04.017
  76. Li, Q., He, Y.C., Xian, M., Jun, G., Xu, X., Yang, J.M. and Li, L.Z., Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment, Bioresour. Technol. 100:3570-3575 (2009). https://doi.org/10.1016/j.biortech.2009.02.040
  77. Grous, W.R., Converse, A.O. and Grethlein, H.E., Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar, Enzyme Microb. Technol. 8:274-280 (1986). https://doi.org/10.1016/0141-0229(86)90021-9
  78. Duff, S.J.B. and Murray, W.D., Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review, Bioresour. Technol. 55:1-33 (1996). https://doi.org/10.1016/0960-8524(95)00122-0
  79. Kobayashi, F., Take H., Asada, C. and Nakamura, Y., Methane Production from Steam-Exploded Bamboo, J. Biosci. Bioeng. 97(6):426-428 (2004). https://doi.org/10.1016/S1389-1723(04)70231-5
  80. Avellar, B.K. and Glasser, W.G., Steam-assisted biomass fractionation. I. Process considerations and economic evaluation, Biomass Bioenergy. 14:205-218(1998). https://doi.org/10.1016/S0961-9534(97)10043-5
  81. Bobleter, O., Binder, H., Concin, R. and Burtscher, E., The conversion of biomass to fuel raw material by hydrothermal pretreatment. In: Palz, W., Chartier, P., Hall, D.O. (Eds.), Energy from Biomass, Applied Science Publishers, London, pp.554-562 (1981).
  82. Allen, S.G., Kam, L.C., Zemann, A.J. and Antal Jr., M.J., Fractionation of sugar cane with hot, compressed compressed, liquid water, Industrial Engineering Chemistry Research. 35:2709-2715 (1996). https://doi.org/10.1021/ie950594s
  83. Antal Jr., M.J., Water: A traditional solvent pregnant with new applications. In: White, H.J. Jr.Jr. (Ed.), Proceedings of the 12th International Conference on the Properties of Water and Steam, Begell House, New York, pp.24-32 (1996).
  84. Katsunobu Ehara and Shiro Saka., Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments, J Wood Sci. 51:148-153 (2005). DOI 10.1007/s10086-004-0626-2
  85. Garrote, G., Domınguez, H. and Parajo, J. C., Hydrothermal processing of lignocellulosic materials, Holz als Roh-und Werkstoff, 57(3):191-202 (1999). https://doi.org/10.1007/s001070050039
  86. Resende, F. L. P., Neff, M. E. and Savage, P. E., Non catalytic gasification of cellulose in supercritical water, Energy Fuels. 21:3637-3643 (2007). https://doi.org/10.1021/ef7002206
  87. Dale, B.E. and Moreira, M.J., Freeze-explosion technique for increasing cellulose hydrolysis, United States, p.31-43 (1982).
  88. Iyer, P.V., WZW Kim, S.B. and Lee Y.Y., Ammonia-recycled percolation process for pretreatment of herbaceous biomass, Appl Biochem Biotechnol. 57/58: 121-132 (1996). https://doi.org/10.1007/BF02941693
  89. Yoon, H.H., WZW Kim, S.B. and Lee, Y.Y., Ammonia-recycled percolation process for pretreatment of biomass feedstock, Appl Biochem Biotechnol. 51/52:5-19 (1995). https://doi.org/10.1007/BF02933407
  90. Holtzapple, M.T., Davison, R.R. and Stuart, E.D., Biomass refining process, US pat 5/ 171/592 (1992b).
  91. Dale, B.E., Henk, L.L. and Shiang, M., Fermentation of lignocellulosic materials treated by ammonia freeze- explosion, Dev. Ind. Microbiol. 26:223-233 (1984).
  92. Mes-Hartree, M., Dale, B.E. and Craig, W.K., Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose, Appl. Microbiol. Biotechnol. 29:462-468 (1988). https://doi.org/10.1007/BF00269069
  93. Parveen, K., Diane, M.B., Michael, J.D. and Pieter, S., Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res. 48:3713-3729 (2009). https://doi.org/10.1021/ie801542g
  94. Zheng, Y.Z., Lin, H.M. and Tsao, G.T., Pretreatment for cellulose hydrolysis by carbon dioxide explosion, Biotechnol. Prog. 14:890-896 (1998). https://doi.org/10.1021/bp980087g
  95. Sinegani, A.A.S., Emtiazi, G., Hajrasuliha, S. and Shariatmadari, H., Biodegradation of some agricultural residues by fungi in agitated submerged cultures, Afr. J. Biotechnol. 4(10):1058-1061 (2005).
  96. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K. and Tanaka, T., Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw, J. Biosci. Bioeng. 100:637-43 (2005). https://doi.org/10.1263/jbb.100.637
  97. Fan, L.T., Gharpuray, M.M. and Lee, Y.H., Cellulose Hydrolysis, Biotechnology Monographs. Springer, Berlin, p.57 (1987).