Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.5.038

Hydrolysates of lignocellulosic materials for biohydrogen production  

Chen, Rong (Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education)
Wang, Yong-Zhong (Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education)
Liao, Qiang (Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education)
Zhu, Xun (Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education)
Xu, Teng-Fei (Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education)
Publication Information
BMB Reports / v.46, no.5, 2013 , pp. 244-251 More about this Journal
Abstract
Lignocellulosic materials are commonly used in bio-$H_2$ production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-$H_2$ production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to $H_2$ by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-$H_2$ production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.
Keywords
Fermentation; Hydrogen production; Hydrolysates; Hydrolysis; Lignocellulose;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chang, A. C. C., Tu, Y. H., Huang, M. H., Lay, C. H. and Lin, C. Y. (2011) Hydrogen production by the anaerobic fermentation from acid hydrolyzed rice straw hydrolysate. Int. J. Hydrogen Energy 36, 14280-14288.   DOI   ScienceOn
2 Ibbett, R., Gaddipati, S., Davies, S., Hill, S. and Tucker, G. (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: New insights from thermal-analytical and complementary studies. Bioresour. Technol. 102, 9272-9278.   DOI   ScienceOn
3 Hodge, D. B., Karim, M. N., Schell, D. J. and McMillan, J. D. (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour. Technol. 99, 8940-8948.   DOI   ScienceOn
4 Marzialetti, T., Olarte, M. B. V., Sievers, C., Hoskins, T. J. C., Agrawal, P. K. and Jones, C. W. (2008) Dilute acid hydrolysis of loblolly pine: a comprehensive approach. Ind. Eng. Chem. Res. 47, 7131-7140.   DOI   ScienceOn
5 Matsumoto, M. and Nishimura, Y. (2007) Hydrogen production by fermentation using acetic acid and lactic acid. J. Biosci. Bioeng. 103, 236-241.   DOI   ScienceOn
6 Ginkel, S. V. and Logan, B. (2005) Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ. Sci. Technol. 39, 9351-9356.   DOI   ScienceOn
7 Almeida, J. R. M., Bertilsson, M., Gorwa-Grauslund, M. F., Gorsich, S. and Liden, G. (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82, 625-638.   DOI
8 Galbe, M. and Zacchi, G. (2007) Pretreatment of lignocellulosic materials forefficient bioethanol production. Adv. Biochem. Eng. Biotechnol. 108, 41-65.
9 Jung, K. W., Kim, D. H. and Shin, H. S. (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour. Technol. 102, 2745-2750.   DOI   ScienceOn
10 Pattra, S., Sangyok, S., Boonmee, M. and Reungsang, A. (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int. J. Hydrogen Energy 33, 5256-5265.   DOI   ScienceOn
11 Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G., and Schols, H. A. (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98, 2034-2042.   DOI   ScienceOn
12 Phuong, L. X., Shida, S. and Saito, Y. (2007) Effects of heat treatment on brittleness of Styrax tonkinensis wood. J. Wood Sci. 53, 181-186.   DOI
13 Merino, S. T. and Cherry, J. (2007) Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 108, 95-120.
14 Feldman, D., Banu, D., Natansohn, A. and Wang, J. (1991) Structure properties relations of thermally cured epoxy-lignin polyblends. J. App. Polym. Sci. 42, 1537-1550.   DOI
15 Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673-686.   DOI   ScienceOn
16 Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R. and Lee, Y. Y. (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96, 1959-1966.   DOI   ScienceOn
17 Mielenz, J. R. (2001) Ethanol production from biomass: technology and commercialization status. Curr. Opin. Biotechnol. 4, 324-329.
18 Balat, H. and Kirtay, E. (2010) Hydrogen from biomass - Present scenario and future prospects. Int. J. Hydrogen Energy 35, 7416-7426.   DOI   ScienceOn
19 Liu, H., Zhang, T. and Fang, H. P. P. (2003) Thermophilic $H_{2}$ production from cellulose containing wastewater. Biotechnol. Lett. 25, 365-369.   DOI   ScienceOn
20 Mueller-Langer, F., Tzimas, E., Kaltschmitt, M. and Peteves, S. (2007) Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydrogen Energy 32, 3797-3810.   DOI   ScienceOn
21 Kirtay, E. (2011) Recent advances in production of hydrogen from biomass. Energy Convers. Manage. 52, 1778-1789.   DOI   ScienceOn
22 Hawkes, F. R., Dinsdale, R., Hawkes, D. L. and Hussy, I. (2002) Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energy 27, 1339-1347.   DOI   ScienceOn
23 Kumar, R., Singh, S. and Singh, O. V. (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377-391.   DOI   ScienceOn
24 Menon, V. and Rao, M. (2012) Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522-550.   DOI   ScienceOn
25 Kumar, R., Singh, S. and Singh, O. V. (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377-391.   DOI   ScienceOn
26 Mohan, D., Pittman, C. U. and Steele, P. H. (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848-889.   DOI   ScienceOn
27 Lo, Y. C., Su, Y. C., Chen, C. Y., Chen, W. M., Lee, K. S. and Chang, J. S. (2009) Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis. Bioresour. Technol. 100, 5802-5807.   DOI   ScienceOn
28 Liu, H., Zhang, T. and Fang, H. P. P. (2003) Thermophilic $H_{2}$ production from cellulose containing wastewater. Biotechnol. Lett. 25, 365-369.   DOI   ScienceOn
29 Kargi, F., Eren, N. S. and Ozmihci, S. (2012) Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. Int. J. Hydrogen Energy 37, 2260-2266.   DOI   ScienceOn
30 Sagnak, R., Kargi, F. and Kapdan, I. K. (2011) Bio-hydrogen production from acid hydrolyzed waste ground wheat by dark fermentation. Int. J. Hydrogen Energy 36, 12803-12809.   DOI   ScienceOn
31 Ozgur, E., Mars, A. E., Peksel, B., Louwerse, A., Yucel, M., Gunduz, U. and Eroglu, İ. (2010) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int. J. Hydrogen Energy 35, 511-517.   DOI   ScienceOn
32 Cao, G. L., Ren, N. Q., Wang, A. J., Guo, W. Q., Xu, J. F. and Liu, B. F. (2010) Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energy 35, 13475-13480.   DOI   ScienceOn
33 Carver, S. M., Nelson, M. C., Lepistö, R., Yu, Z. T. and Tuovinen, O. H. (2012) Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and $60^{\circ}C$. Bioresour. Technol. 104, 424-431.   DOI   ScienceOn
34 Pienkos, P. T. and Zhang, M. (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16, 743-762.   DOI
35 Cao, W. X., Sun, C., Liu, R. H., Yin, R. Z. and Wu, X. W. (2012) Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour. Technol. 111, 215-221.   DOI   ScienceOn
36 Datar, R., Huang, J., Maness, P. C., Mohagheghi, A., Czernik, S. and Chornet, E. (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrogen Energy 32, 932-939.   DOI   ScienceOn
37 Elbeshbishy, E., Hafez, H., Dhar, B. R. and Nakhla, G. (2011) Single and combined effect of various pretreatment methods for biohydrogen production from food waste. Int. J. Hydrogen Energy 36, 11379-11387.   DOI   ScienceOn
38 Nguyen, T. A. D., Kim, K. R., Kim, M. S. and Sim, S. J. (2010) Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int. J. Hydrogen Energy 35, 13392-13398.   DOI   ScienceOn
39 Hallenbeck, P. C. (2009) Fermentative hydrogen production: Principles, progress, and prognosis. Int. J. Hydrogen Energy 34, 7379-7389.   DOI   ScienceOn
40 Jung, K. W., Kim, D. H. and Shin, H. S. (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour. Technol. 102, 2745-2750.   DOI   ScienceOn
41 Chu, Y. B., Wei, Y. L., Yuan, X. Z. and Shi, X. S. (2011) Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation. Bioresour. Technol. 102, 3805-3809.   DOI   ScienceOn
42 Kapdan, I. K. and Kargi, F. (2006) Bio-hydrogen production from waste materials. Enzym. Microb. Technol. 38, 569-582.   DOI   ScienceOn
43 Kadar, Z., de Vrije, T., Van Noorden, G. E., Budde, M. A. W., Szengtel, Z., Reczeny, K. and Classen, P. A. M. (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl. Biochem. Biotechnol. 113-116, 497-508.
44 Pattanamanee, W., Choorit, W., Deesan, C., Sirisansaneeyakul, S. and Chisti, Y. (2012) Photofermentive production of biohydrogen from oil palm waste hydrolysate. Int. J. Hydrogen Energy 37, 4077-4087.   DOI   ScienceOn
45 Cheng, C. H., Hung, C. H., Lee, K. S., Liau, P. Y., Liang, C. M., Yang, L. H. and Lin, C. Y. (2008) Microbial community structure of a starch-feeding fermentative hydrogen production reactor operated under different incubation conditions. Int. J. Hydrogen Energy 33, 5242-5249.   DOI   ScienceOn
46 Lay J. J. (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol. Bioeng. 74, 280-287.   DOI   ScienceOn
47 Chen, C. Y., Liu, C. H., Lo, Y. C. and Chang, J. S. (2011) Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresour. Technol. 102, 8484-8492.   DOI   ScienceOn
48 Boran, E., Ozgur, E., van der Burg, J., Yucel, M., Gunduz, U. and Eroglu, I. (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J. Cleaner Prod. 18, S29-S35.   DOI   ScienceOn
49 Zhang, Z. P., Show, K. Y., Tay, J. H., Liang, D. T., Lee, D. J. and Jiang, W. J. (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem. 41, 2118-2123.   DOI   ScienceOn
50 Tsygankov, A. A., Hirata, Y., Miyake, M., Asada, Y. and Miyake, J. (1994) Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J. Ferment. Bioeng. 77, 575-578.   DOI   ScienceOn
51 Quemeneur, M., Hamelin, J., Barakat, A., Steyer, J. P., Carrere, H. and Trably, E. (2012) Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int. J. Hydrogen Energy 37, 3150-3159.   DOI   ScienceOn
52 Panagiotopoulos, I. A., Bakker, R. R., Budde, M. A. W., de Vrije, T., Claassen, P. A. M. and Koukios, E. G. (2009) Fermentative hydrogen production from pretreated biomass: A comparative study. Bioresour. Technol. 100, 6331-6338.   DOI   ScienceOn
53 Akkose, S., Gündüz, U., Yücel, M. and Eroglu, I. (2009) Effects of ammonium ion, acetate and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001. Int. J. Hydrogen Energy 34, 8818-8827.   DOI   ScienceOn
54 de Vrije, T., Bakker, R. R., Budde, M. A. W., Lai, M. H., Mars, A. E. and Claassen, P. A. M. (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol. Biofuels 2(12), 1-15.   DOI   ScienceOn
55 de Vrije, T., de Haas, G. G., Tan, G. B., Keijsers, E. R. P. and Claassen, P. A. M. (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int. J. Hydrogen Energy 27, 1381-1390.   DOI   ScienceOn
56 Thygesen, A., Marzorati, M., Boon, N., Thomsen, A. B. and Verstraete, W. (2011) Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). Appl. Microbiol. Biotechnol. 89, 855-865.   DOI