Browse > Article
http://dx.doi.org/10.4489/MYCO.2006.34.4.159

Bioconversion of Lignocellulose Materials  

Pothiraj, C. (Dept. of Microbiology, VHNSN College)
Kanmani, P. (Dept. of Microbiology, VHNSN College)
Balaji, P. (Research Center in Botany, Thiagarajar College (Autonomous))
Publication Information
Mycobiology / v.34, no.4, 2006 , pp. 159-165 More about this Journal
Abstract
One of the most economically viable processes for the bioconversion of many lignocellulosic waste is represented by white rot fungi. Phanerochaete chrysosporium is one of the important commercially cultivated fungi which exhibit varying abilities to utilize different lignocellulosic as growth substrate. Examination of the lignocellulolytic enzyme profiles of the two organisms Phanerochaete chrysosporium and Rhizopus stolonifer show this diversity to be reflected in qualitative variation in the major enzymatic determinants (ie cellulase, xylanase, ligninase and etc) required for substrate bioconversion. For example P. chrysosporium which is cultivated on highly lignified substrates such as wood (or) sawdust, produces two extracellular enzymes which have associated with lignin deploymerization. (Mn peroxidase and lignin peroxidase). Conversely Rhizopus stolonifer which prefers high cellulose and low lignin containg substrates produce a family of cellulolytic enzymes including at least cellobiohydrolases and ${\beta}-glucosidases$, but very low level of recognized lignin degrading enzymes.
Keywords
Bioconversion; Bio-fuel; Cellobiohydrolases; Lignocellulosic enzymes; White rot fungi;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akin, D. E., Rigsby, L. L. and Sethuraman, A. 1995. Alterations in the structure, chemistry and biodegradation of grass lignocellulose treated with white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl. Environ. Microbiol., 61: 1591-1598
2 Arora, D. S., Chander, M. And Gill, P. K. 2002. Involvement of lignin peroxidase, manganese peroxidase and laccase in the degradation and selective ligninolysis of wheat straw. Int. Bioterior. Biodegrad 50: 115-120   DOI   ScienceOn
3 Beauchemin, K. A., Morgavi, D. P., Mcallister, T. A., Yang, W. Z. and Rode, L. M. 2001. The use of enzymes in ruminant diets. Pp 296-322. In: Wiseman, J. and Garnsworthy, P. C. Eds. Recent Advances in Animal Nutrition. Nottingham University Press
4 Beauchemin, K. A., Rode, L. M. and Sewalt, V. J. H. 1995. Fibrolytic enzymes increase fibre digestibility and growth rate of steers fed dry forages. Can. J Anim. Sci. 75: 641-644   DOI
5 Beg, Q. K., Kapoor, M., Mahajan, L. and Hoondal, G. S. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338   DOI
6 Betts, W. B., Dart, R. K., Ball, A. S. and Pedlar, S. L. 1991. Biosynthesis and Structure of lignocellulose. Pp 139-155. In: Betts. Ed. Biodegradation: Natural and Synthetic Materials. SpringerVerlag, Berlin, Germany
7 Bhat, M. K. 2000. Research review paper: Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383   DOI   ScienceOn
8 Bosco, F., Ruggeri, B. and Sassi, G 1999. Performances of a trickle bed reactor (TBR) for exoenzyme production by Phanerochaete chrysosporium: influence of a superficial liquid velocity. Chem. Eng. Sci. 54: 3163-3169   DOI   ScienceOn
9 Campbell, C. J. and Laherrere, J. H. 1998. The end of cheap oil. Sci. Am. 3: 78-83
10 Canel, E. and Moo-Young, M. 1980. Solid state fermentation systems. Process Biochem. 15: 24-28
11 Falcon, M. A., Rodriguez, A. and Carnicero, A. 1995. Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol. Biochem. 27: 121-126   DOI   ScienceOn
12 Chahal, P. S., Chahal, D. S. and Le, G. B. B. 1996. Production of cellulose in solid - state fermentation with Trichoderma reesei MCG 80 on wheat straw. Appl. Biochem. Biotechnol. 57/58: 433-442   DOI
13 Christopherson, C., Anderson, E., Jokobsen, T. S. and Wagner, P. 1997. Xylanases in wheat separation. Starch. 49: 5-12   DOI   ScienceOn
14 Coombs, J. 1987. EEC resources and strategies. Phil. Trans. R. Soc. London. Ser. A. 321: 405-422   DOI
15 Bao, W. and Renganathan, V. 1991. Triiodide reduction by cellobiose:quinone oxidoreductase of Phanerochaete chrysosporium. FEBS 279: 30-32   DOI   ScienceOn
16 Baldrian, T. and Gabriel, J. 2003. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol. Lett. 220: 235-240   DOI   ScienceOn
17 Beauchemin, K. A., Colombatto, D., Morgavi, D. P. and Yang, W. Z. 2003. Use of exogenous fibrolytic enzymes to improve animal feed utilization by ruminants. J Anim. Sci. 81: E37-E47
18 Goyal, A., Ghosh, B. and Eveleigh, D. 1991. Characterisation of fungal cellulases. Biores. Technol. 36: 37-50   DOI   ScienceOn
19 Kersten, P. J. and Kirk, T. K. 1987. Involvement of a new enzyme, glyoxal oxidase, in extracellular $H_{2}O_{2}$production by P. chrysosporium. J. Bacteriol. 169: 2195-2202   DOI
20 Grethlein, H. E. and Converse, A. O. 1991. Common Aspects of acid prehydrolysis and steam explosion for pretreating wood. Biores. Technol. 36: 77-82   DOI   ScienceOn
21 Krause, D.O., Denman, S. E. and Mackie, R. I. 2003. Opportunities to improve fibre degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 797: 1-31
22 Barbonnais, R. and Paice, M. G. 1988. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju Biochem. J 255: 445-450   DOI
23 Call, H. P. and Muck, I. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systerns ($Lignozyme^{\circledR}$-process). J. Biotechnol. 53: 163-202   DOI   ScienceOn
24 McCarthy, A. J. 1987. Lignocellulose-degrading actinomycetes. 1987. FEMS Microbiol. Lett. 46: 145-163   DOI
25 Lonsane, B. K., Saucedo-Castaneda, G. and Raimbault, M. 1992. Scale-up strategies for solid fermentation system. Process Biochem. 27: 259-273   DOI   ScienceOn
26 Malherbe, S. and Cloete, T. E. 2003. Lignocellulose biodegradation: fundamentals and applications: A review. Environ. Sci. Biotechnol. 1: 105-114
27 Mandels, M. and Sternberg, D. 1976. Recent advances in cellulose technology. Ferment. Technol. 54: 267-286
28 Miller, Jr. R. C., Gilkes, N. R. and Johnson, P. 1996. Similarities between bacterial and fungal cellulase systems. Proceedings of the 6th International Conference on Biotechnology in the Pulp and Paper Industry: Advances in Applied and Fundamental Research, pp. 531-618
29 Montane, D., Salvado, J., Torras, C. and Farriol, X. 2002. Hightemperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22: 295-30   DOI   ScienceOn
30 Jech, L. 2000. Solid-state fermentation of agricultural wastes for endoglucanase production. Industrial Crops and Products. 11: 1-5   DOI   ScienceOn
31 Gold, M. H. and Alic, M. 1993. Molecular biology of the lignindegrading basidiomycetes Phanerochaete chrysosporium. Microbiol. Rev. 57: 605-622
32 Palmer, J. M. and Evans, C. S. 1983. Phil. Trans. R. Soc. Lend. B. 32: 293
33 Nigam, P. and Singh, D. 1995. Processes for fermentative production of xylitol - a sugar substitute: A review: Process Biochem. 30: 117-124   DOI
34 Nishida, A. and Eriksson, K. E. 1987. Formation, purification, and partial characterisation of methanol oxidase, a $H_{2}O_{2}$-producing enzyme in Phanerochaete chrysosporium. Biotechnol. Appl. Biochem. 9: 325-338
35 Pal, M., Calvo, A. M., Terron, M. C. and Gonzalez, A. E. 1995. Solid-State Fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor. World J Microbiol. Biotechnol. 11: 541-545   DOI   ScienceOn
36 Perestelo, F., Falcon, M. A., Carnicero, A., Rodriguez, A. and Fuenrnte, G 1994. Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens. Biotechnology Letters. 16: 209-302
37 Krik, T. K. and Fenn, P. 1982. Pp 67. In: Franland, A., Hedges, L. and Swift, B. Eds. Decomposer Basidiomycetes. Cambridge University Press, Cambridge
38 Levine, J. S. 1996. Biomass burning and global change. In: Levine, J. S. (ed) (vol. 1) Remote sensing and inventory development and biomass burning in Africa. The MIT Press, Cambridge, Massachusetts, USA, pp 35
39 Ruggeri, B. and Sassi, G. 2003. Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by Phanerochaete chrysosporium. Process Biochem. 38: 1169-1676
40 Rosales, E., Couto, S. R. and Sanroman, A 2002. New uses of food waste:application to laccase production by Trametes hisuta. Biotechnol. Lett. 24: 701-704   DOI   ScienceOn
41 Scott, G M., Aktar, M. and Lentz, M. J. 1998. New technology for papermaking: commercial ising biopulping. Tappi J 81: 220-225
42 Mudgett, R. E. 1986. Solid-state fermentations. Pp 66-83. In: Demain, A. L. and Solomon, N. A. Eds. Manual of Industrial Microbiology and Biotechnology. American Society of Microbiology, Washington DC, USA
43 Ribbons, R. W. 1987. Chemicals from lignin. Phil. Trans. R. Soc. Lond. Ser. A. 321: 485-494   DOI
44 Roberto, I. C., Mussatto, S. I. and Rodrigues. R. C. L. B. 2003. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Indust. Crops Prod. 17: 171-176   DOI   ScienceOn
45 Nguyen, Q. A. 1993. Economic analyses of integrating a biomass-to-ethanol plant into a pulp/saw mill. Pp 321-340. In: Saddler. Eds. Bioconversion of Forest and Agricultural Plant. CAB International, UK
46 Wood, T. M. 1991. Fungal cellulases. Pp 491-534. In: Haigler Biosynthesis and Biodegradation of cellulose. Macel Dekker Inc., New York
47 Nieves, R. A., Ehrman, C. I. and Adney, W. S. 1998. Technical communication: survey and commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol. Biotechnol. 14: 301-304   DOI
48 Wong, K. K. Y. and Saddler, J. N. 1992a. Applications of hemicellulases in the food, feed and pulp and paper industries. Pp 127-143. In: Coughlan, P. P. and Hazlewood, G. P. Eds. Hemicellulose and Hemicellulases. Portland Press, London
49 Wong, K. K. Y. and Saddler, J. N. 1992b. Trichoderma xylanases: their properties and applications. Pp 171-186. In: Visser Xylans and their Xylanases. Elsevier, Amsterdam
50 Prates, J. A. M., Tarbouriech, N. and Charnock, S. J. 2001. The structure of the feruloyl esterase module of xylanases 10B from Clostridium thermocellum provides insight into substrate recognition. Structure 9: 1183-1190   DOI   ScienceOn
51 Walton, N. J., Mayer, M. J. and Narbad, A 2003. Molecules of interest: Vanillin. Phytochemistry 63: 505-515   DOI   ScienceOn
52 Rabinovich, M. L., Melnik, M. S. and Bolobova, A. V. 2002a. Microbial cellulases: A review. Appl. Biochem. Microbiol. 38: 305-321   DOI
53 Saul, D. J., Williams, L. C. and Grayling, R. A. 1990. Cel B,a gene coding for a bifunctional cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl. Environ. Microbiol. 56: 3117- 3124
54 Rabinovich, M. L., Melnik, M. S. and Bolobova, A. V. 2002b. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow) 67: 850-871   DOI
55 Sun, Y. and Cheng, J. 2002. Hydrolysis of lignocellulosic material from ethanol production: A review. Biores. Technol. 83: 1-11   DOI   ScienceOn
56 Subramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64   DOI   ScienceOn
57 Shen, H., Gilkes, N. R. and Kilburn, D. G. 1995. Cellobiohydrolases B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas jimi Biochem. J. 311: 67-74   DOI
58 Smith, J. E., Anderson, J. G and Senior, E. K. 1987. Bioprocessing of lignocelluloses. Phil. Trans. R. Soc. Lond. Ser. A. 321: 507-521   DOI
59 Suurnakki, A, Tenkanen, M., Buchert, J. and Viikari, L. 1997. Hemicellulases in the Bleaching of Chemical Pulp. Pp 262-284. In: Scheper. Eds. Advances in Biochemical Engineering/ Biotechnology. Springer-Verlag Berlin, Heidelberg
60 Vicuna, R. 1988. Bacterial degradation of lignin. Enzyme Microb. Technol. 10: 646-655   DOI   ScienceOn
61 Zeitch, K. J. 2000. Pp 358. In: Zeitch. Ed. The Chemistry and Technology of Furfural and Its Many By-Products. Elsevier
62 Zimmermann, W. 1990. Degradation of lignin by bacteria. J. Biotechnol. 13: 119-130   DOI   ScienceOn
63 Haltrich, D., Nidetzky, B. and Kulbe, K. D. 1996. Production of fungal xylanases. Biores. Technol. 58: 137-161   DOI   ScienceOn
64 Kelley, R. L. and Reddy, C. A. 1986. Purification and characterisation of glucose oxidase from lignolytic cultures of P chrysosporium. J.Bacteriol. 166: 269-274   DOI
65 Henrissat, B. and Davies, G. J. 2000. Glycoside hydro lases and glycosyltransferases. Families, modules and implications for genomics. Plant Physiol. 124: 1515-1519   DOI   ScienceOn
66 Shallom, D., Shoham, Y. 2003. Microbial hemicellulases. Curr.Opin. Microbiol. 6: 219-228   DOI   ScienceOn
67 Jorgensen, H., Erriksson, T. and Borjesson, J. 2003. Purification and characterisation of five cellulases and one xylanases from Penicillium brasilianum IBT 20888. Enzyme Microb. Technol. 32: 851-861   DOI   ScienceOn
68 Eveleigh, D. E. 1987. Cellulase a perspective. Phil. Trans. R. Soc.Lond. Ser. A. 321: 435-447   DOI
69 Chahal, D. S. 1992. Bioconversions of polysaccharides of ligno- cellulose and simultaneous degradation of lignin. Pp 83-93. In: Kennedy et al. Eds. Lignocellulosics: Science, Technology, Development and Use. Ellis Horwood Limited, England
70 Esterbauerm, H., Steiner, W. and Labudova, I. 1991. Production of Trichoderma cellulase in laboratory and pilot scale. Biores. Technol. 36: 51-65   DOI   ScienceOn