Browse > Article
http://dx.doi.org/10.7747/JFS.2010.26.2.137

A Research Trend of Enzymatic Hydrolysis of Lignocellulosic Biomass : A Literature Review  

Kim, Yeong-Suk (College of Forest Science, Kookmin University)
Publication Information
Journal of Forest and Environmental Science / v.26, no.2, 2010 , pp. 137-148 More about this Journal
Abstract
The high costs for ethanol production with lignocellulosic biomass as a second generation energy materials currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into sugar that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of the enhancement of enzymatic hydrolysis for lignocellulosic biomass after pretreatment in bioethanol production process.
Keywords
Bioethanol; Enzymatic Hydrolysis; Lignocellulosic biomass; Cellulase; Surfactants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu, Z., N. Sathitsuksanoh, T. Vinzant, D. J. Schell, J. D. McMillan, Y. -H. P. Zhang. 2009. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fraction: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol. Bioeng. 103: 715-724.   DOI   ScienceOn
2 Zuhai, S. A. 2008. The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresource Technology 99: 4078-4085.   DOI   ScienceOn
3 Zhang, Y. -H. P., L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellilose: noncomplexed cellulase system. Biotechnol Bioeng. 88(7):797-824.   DOI   ScienceOn
4 Taherzadeh, M. J., and K. Karimi. 2007. Enzyme-based hydrolysis progresses for ethanol from lignocellulosic materials: a review. BioResources 2(4): 707-738.
5 Tenggborg, C., M. Galbe, and G. Zacchi. 2001. Influence of enzyme loading and physical parameters on the enzaymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17(1): 110-117.   DOI   ScienceOn
6 Thaerzadeh, M. J., R. Eklund, L. Gustafsson, C. Niklasson, and G. Liden. 1997. Characterization and fermentation of dilute-acid hydrolyzates from wood. Industrial & Engineering Chemistry Research 36(11): 4659-4665.   DOI   ScienceOn
7 Tu, M., R. P. Chandra, and J. N. Saddler. 2007a. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnology Progress 23(2): 398-406.   DOI   ScienceOn
8 Tu, M., R. P. Chandra, and J. N. Saddler. 2007b. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgeploe pine. Biotechnol. Prog. 23: 1130-1137.
9 Tu, M., X. Zhang, and M. Paice, P. McFalane, and J. N. Saddler. 2009. Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine. Biotechnol. Prog. 25: 1122-1129.   DOI   ScienceOn
10 Wong, K. K. Y., K. F. Deverell, K. L. Mackie, T. A. Clark, L. A. Donaldson. 1988. The relationship btween fiber porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol. Bioeng. 31: 447-456.   DOI   ScienceOn
11 Reinikainen T, L. Ruohonen, T. Nevanen, L. Laaksonen, P. Kraulis, and T. A. Jones. 1992. Investigation of the function of mutated cellulose binding domains of Trichoderma reesei cellobiohydrolase I. Protein 14: 475-482.   DOI   ScienceOn
12 Wu, J., and L. K. Ju. 1998. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 649-652.   DOI   ScienceOn
13 Wyman, C. E. 1996. Handbook on Bioethanol: Production and Utilization, Washington, DC, Taylor & Francis.
14 Rayne, S., and G. Mazza. 2007. Trichoderma reesei derived cellulase activity in three N,N-dimethylethanolammonium akylcarboxylate ionic liquids, hdl:10101/npre. 632.1.
15 Rivers, D. B., G. H. Emert. 1988. Factors affecting the enzymatic hydrolysis of municipal solid waste components. Biotechnol. Bioeng. 26: 278-281.
16 Roche, C. M., C. J. Dibble, J. S. Knutsen, J. J. Stickel, M. W. Liberatore. 2009. Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2): 290-300.   DOI   ScienceOn
17 Sassner P., M.Galbe, G.Zacchi, 2008. Theno-econocim evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy 32: 422-430.   DOI   ScienceOn
18 Selig, M. J., S. Viamajala, S. R. Decker, M. P. Tucker, M. E. Himmel, and T. B. Vinzant. 2007. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 23: 1333-1339.   DOI   ScienceOn
19 Shen, Y., and L. M. Wang. 2004. Kinetics of the cellulase catalyzed hydrolysis of cellulose fibers. Textile Research Journal 74(6): 539-545.   DOI   ScienceOn
20 Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 83(1): 1-11.   DOI   ScienceOn
21 Taherzadeh, M. J. 1999. Ethanol from lignocellulose: Physiological effects of inhibitors and fermentation strategies, chemical reaction engineering, chalmers University of technology, Goteborg, sweden.
22 Ogier, J. C., D. Ballerini, J. P. Leygue, L. Rigal, and J. Pourquie. 1999. "Ethanol production from lignocellulosic biomass," Oil & gas science and technology / revuede l'Institut Francasi du Petrole. 54(1): 67-94.   DOI   ScienceOn
23 Ortega, N., M. D. Busto, and M. Perez-Mateos. 2001. Kinetics of cellulose saccharification by Trichoderma reesei cellulases. Int. Biodeterior. Biodegrad. 47(1): 7-14.   DOI   ScienceOn
24 Park, J. -W., K. Park, H. Song, H. Shin. 2002. Saccharification and adsorption characteristics of modified cellulase with hydrophilic/hydrophobic copolymers. Journal of Biotechnology 93: 203-208.   DOI   ScienceOn
25 Pedersen, M. and A. S. Meyer. 2009. Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol. Prog. 25: 399-408.   DOI   ScienceOn
26 Pereria, A. N., M. Mobedshahi, M. R. Ladisch. 1988. Preparation of cellodextrins. Methods Enzymol. 160: 26-43.   DOI
27 Peri, S., S. Karra, Y. Y. Lee, and M. N. Karim. 2007. Modeling intrinsic kinetics of enzymetic cellulose hydrolysis. Biotechnology Progress 23: 626-637.
28 Phillip, B., D. C. Dan, H. P. Fink. 1981. Acid and enzymatic hydrolysis on cellulose in relation to its physical. Proceedings of the international symposium on wood and pulping chemistry: stockholm, sweden, 4: 79-83.
29 Nielsen, A. D., L. Arleth, P. Westh. 2005. Analysis of protein-surfactant interractions-a titration calorimetric and fluorescence spectroscopic investigation of interactions between humicola insolens cutinase and an anionic surfactant. Biochimica et biophysica Acta 1752: 124-132.   DOI   ScienceOn
30 Nidetzky, B., W. Steiner, M. Hyan, M. Claeyssens. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem. J. 298: 705-710.   DOI
31 Lu, Y. P., B. Yang, D. Gregg, J. N. Saddler, S. D. Mansfield. 2002. Cellulase dasorption and an evaluatio of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl. Biochem. Biotechnol. 98: 641-654.   DOI   ScienceOn
32 Lynd, L. R., P. J. Wemier, W. H. van Zyl, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 66(3): 506-577.   DOI   ScienceOn
33 Mabee W. E., and J. N. Saddler. 2005. IEA bioenergy task 39 liquid biofuels from biomass-progress in enzymatic hydrolysis of lignocellulosicx. Technology Report. http://www.valbiom.be/uploadPDF/Progress in Enzymatic hydrolysis.pdf.
34 Maija, T., N.Mar-Leena, L. Markus, & V .Lisa. 2003. Cellulases in food processing, Handbook of Food Enzymology, New york, Marcel Dekker.
35 Malmsten M. and J. M. ALstine. 1996. Adsorption of poly(ethlene glycol) amphiphiles to form coatings which inhibit dasorption. J. Colloid Interf. Sci. 177: 502-512.   DOI   ScienceOn
36 Malmsten M., K. Emoto and J. M. ALstine. 1998. Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol)-based coationgs. J. Colloid Interf. Sci. 2020: 507-517.
37 MarketResearchAnalyst.com, 2008. World's ethanol production forecast 2008-2012.
38 Itoh, H., M. Wada, Y. Honda, M. Kuwahara, and T. Watanabe. 2003. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wook by ethanolysisi and white rot fungi. J. Biotechnol. 103: 273-280.   DOI   ScienceOn
39 Lee, Y. Y., P. Iyer, and R. W. Torget. 1999. Dilute-acid hydrolysis of lignocellulosic biomass. Adv. Biochem. Eng. Biotechnol. 65: 93-115.
40 Linde, M., M. Galbe, and G. Zacchi. 2007. Simultaneous saccharification and fermentation of steam-pretreated barely straw at low enzyme loadings and low yeast concentration. Enzyme Microb. Tech. 40(5): 1100-1107.   DOI   ScienceOn
41 Jeoh, T., C. I. Ishizawa, M. F. Davis, M. E. Himmel, W. S. Andey, D. K. Johnson. 2007. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Boieng. 98: 112-122.   DOI   ScienceOn
42 Jorgensen, H., J. P. Kutter, and L. Olsson. 2003. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Anal. Biochem. 317(1): 85-93.   DOI   ScienceOn
43 Kadar, Z., Z. Szengyel, K. Reczey. 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crop. Prod. 20: 103-110.   DOI   ScienceOn
44 Katzen, R., P. W. Madson, and D. A. Monceaux. 1995. Use of cellulosic feedstocks for alcohol production, in the alcohols textbook, Nottingham University Press. 37-46.
45 Khanal, S. K., R.Y. Surampalli, T. C. Zhang, B.P. Lamsal, R.D. Tyagi, and C. M. Kao. 2010. Bioenergy and biofuel from biowastes and biomass, 203, 205, ASCE
46 Kim, D. W., T. S. Kim, Y. K. Jeong, J. K. Lee. 1992. Adsorption kinetics and behaviors of cellulase components on microcrystalline cellulose. J. Ferment. Bioeng. 73: 461-466.   DOI   ScienceOn
47 Donohoe, B. S., M. J. Selig, S. Viamajala, T. B. Vinzant, W. S. Adeny, M. E. Himmel. 2009. Detecting cellulase penetration Into corn stover cell walls by immuno-electron microscopy, Biotechnology and boiengineering, 103(3): 480-489.   DOI   ScienceOn
48 Henrissat, B.. 1994. Cellulases and their ineraction with cellulose. Cellulose 1: 169-196.   DOI
49 Holtzapple, M. T., J. H. Jun, G. Ashok, S. L. Patibandla, and B. E. dale. 1991. The ammonia freeze explosion (AFEX) process - A practical lignocellulose pretreatment, Appl. Biochem. Biotech. 28-9: 59-74.   DOI   ScienceOn
50 Divne, C., J. Stahlberg, T. T. Teeri, T.A. Jones. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50$\AA$ long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275: 309-325.   DOI   ScienceOn
51 EERE,2008. Biomass multi-year program plan, U.S.Department of Energy.
52 Eeriksson, T., J. Borjesson, F. Tjerneld. 2002. Mechanism of surfactant effect in enzymeatic hydrolysis of lignocellulose. Enzyme and microbial technology 31: 353-364.   DOI   ScienceOn
53 Eggeman, T. and R. T. Elander. 2005. Process and economic analysis of pretreatment techmologies, Bioresour Technol. 96(18): 2019-2025.   DOI   ScienceOn
54 Eklund, R. and G. Zacchi. 1995. Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme microb. Tech. 17(3): 255-259.   DOI   ScienceOn
55 Eriksson, T., J. Borjesson, and F. Tjerneld. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme microb. Tech. 31: 353-364.   DOI   ScienceOn
56 Yang, B., C. E. Wyman. 2006. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering 94(4): 611-617.   DOI   ScienceOn
57 Coughlan, M. P. 1990. Cellulose degradation by fungi, p.1-35. In W. M. Fogarty and C. T. Kelly(ed.), Microbial enzymes and biotechnology, 2nd ed., Elsevier Applied Science, London, UK.
58 Dadi, A. P., S. Varanasi, C. A. schall. 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95(5): 904-910.   DOI   ScienceOn
59 Delmer, D. P., and Y. Amor. 1995. Cellulose biosynthesis. Plant cell 7(7): 987-1000.   DOI
60 Wyman, C. E., B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, Y. Y. Lee, C. Mitchinson, H. N. Saddler. 2009. Comparative sugar recovery and fermentation date following pretreatment of poplar wood by leading technolgies. Biotechnology Progress 25: 333-339.   DOI   ScienceOn
61 Yoshida, M., Y. Liu, S. Uchida, K. Kawarada, Y. Ukagami, H. chinose, S. Kaneko, K. Fukuda. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of miscanthus sinensis to monosaccharides. Bioscience Biotechnology and Biochemistry 72(3): 805-810.   DOI   ScienceOn
62 Zeng, M., N. S. Mosier, C. P. Huang, D. M. Sherman, and M. R. Ladisch. 2007. Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol. Bioeng. 97(2): 265-278.   DOI   ScienceOn
63 Zhang, Y. -H. P., and L. R. Lynd. 2004. Towards and aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulose systems. Biotechnology and Bioengineering 88: 797-824.   DOI   ScienceOn
64 Zhang, Y. -H. P., D. J. Schell, J. D. McMillan. 2007. Methodological analysis for determination of enzymatic digestibility of cellulosic materials. Biotechnology and Bioengineering 96(1): 188-194.   DOI   ScienceOn
65 Mizutani, C., K. Scthumdhavan, P. Howley, and N. Bertoniere. 2002. Effect of a nonionic surfactant on Trichoderma cellulase treatments of regenerated cellulose and cotton yarns. Cellulose 9(1): 83-89.   DOI   ScienceOn
66 Rabinovich, M. L., M. S. Melnick, and A. V. Bolobova. 2002. The structure and mechanism of action of celluloytic enzymes. Biochemistry (moscow) 67(8): 850-871.   DOI   ScienceOn
67 Rastegari, A. A., A. -K. Borbar, A. T. -Kafrani. 2009. Interaction of cellulase with cationic surfactants: Using surfactant membrane selective electrodes and fluorescence spectroscopy. Colloods and Surfaces 73: 132-139.   DOI   ScienceOn
68 Mes-Hartree, M., and J. N. Saddler. 1983. The nature of inhibitory metarials present in pretreated lignocellulosic substrates which inhibit the enzymic hydrolysis of cellulose. Biotechnol. Lett. 5(8): 531-536.   DOI
69 Mosier, N. S., R. Hendrickson, M. Brewer, N. Ho, M. Sedlak, R. Dreshel, G. Welch, B. S. Dien, A. Aden, and M. R. Ladisch. 2005c. Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production, Appl. Biochem. Biotech. 125(2): 77-97.   DOI
70 Mosier, N., R. Hendrickson, N. HO, M. Sedlak, and M. R. Ladisch. 2005a. Optimization of pH controlled liquid hot waterpretreatment of corn stover. Bioresouce Technol. 96(18): 1986-1993.   DOI   ScienceOn
71 Mosiera, N., C. Wyman, B. Dalec, R. Elanderd, Y. Y. Lee, M. Holtzapplef, and M. Ladischa. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 96(6): 673-686.   DOI   ScienceOn
72 Negro, M. J., P. Manzanares, I. Ballesteros, J. M. Oliva, A. Cabanas and M. Ballesteros. 2003. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl. Biochem. Biotech. 105-108: 87-100.
73 Kraulis P. J., G. M. Clore, T. A. Jones, G. Pettersson, J. K. C. Knowles, A Gronenborn, A. M. 1989. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrase I from Trichodermas reesei: A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry. 28: 7241-7257.   DOI   ScienceOn
74 Mansfield, S. D., C. Mooney, and J. N. Saddler. 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Bioethanol. Prog. 15: 804-816.   DOI   ScienceOn
75 Marsden, W. L., P. P. Gray, and M. Mandels. 1985. Enzymatic hydrolysis of cellulose in lignocellulosic materials. Critical Reviews in Biotechnology 3(3): 235-276.   DOI
76 McMillan, J. D. 1994. Pretreatment of lignocellulosic biomass. In: Enzymatic Conversion of Biomass for Fuels Production, ACS Symposium Series, pp 292-324.
77 Kumar, R., C. E. Wyman. 2009a. Access of cellulase to cellulose and lignin for poplar soilds produced by leading pretreatment technologies, Biotechnol. Prog. 25: 807-819.   DOI   ScienceOn
78 Kumar, R., C. E. Wyman. 2009b. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies, Biotechnology and Bioeng. 102(6): 1544-1557.   DOI   ScienceOn
79 Kumar. R., C. E. Wyman. 2009c. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress 25(2): 302-314.   DOI   ScienceOn
80 Lee, D., A. H. C. YU, J. N. Saddler. 1995. Evaluation of cellulase recycling strategies for the hydrolysis of cellulosic substrates. Biotechnol. Bioeng. 45: 328-336.   DOI   ScienceOn
81 Lee, J. 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Bioethanol. 56(1): 1-24.
82 Galbe, M. and G. Zacchi. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59(6): 618-628.   DOI   ScienceOn
83 Kim, S. B., H. J. Kim, and J. C. Kim. 2006a. Enhancement of the enzymatic digestibility of waste newspaper using tween, Appl. Biochem. Biotech, 133(1): 41-57.   DOI   ScienceOn
84 Klemm, D., B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht. 1998. Comprehensive cellulose chemistry. I. Fundamentals and analytical methods, Weinheim, Wiley-VCH.
85 Fan, L. T., Y. -H. Lee, D. R. Beardmore. 1981. The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol. Bioeng. 23: 419-424.   DOI
86 Grethlein, H. E., D. C. Allen, A. O. Converse. 1984. A comparative study of the enzymatic hydrolysis of acid-pretreated white pine and mixed hardwood, Biotechnol. Bioeng. 26: 1498-1505.   DOI   ScienceOn
87 Gupta, R., and Y. Y. Lee. 2009. Mechanism of cellulase reaction on pure cellulosic substrates, Biotechnol. Bioeng. 102(6): 1570-1581.   DOI   ScienceOn
88 Hari Krishna, S, and G. V. Chowdary. 2001. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresource Technol. 77(2): 193-196.   DOI   ScienceOn
89 Haynes C. A., W. Norde. 1994. Globular proteins at solid/liquid interfaces. Colloid Surface B. 2: 517-566.   DOI   ScienceOn
90 Henrissat, B., H. Driguez, C. Viet, M. Schulein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 3: 722-726.   DOI
91 Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J. P. Mornon. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83-95.   DOI   ScienceOn
92 Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875, Process biochem. 39(12): 1843-1848.   DOI   ScienceOn
93 Esteghlalian, A. R., M. Bilodeau, S. D. Mansfield, and J. N. Saddler. 2001. Do enzymatic hydrolyzability and simons' stain reflect the changes in the accessibility of mignocellulosic substrates to cellulase enzymes?, Biotechnology Progress 17(6): 1049-1054.   DOI   ScienceOn
94 Fan, L. T., Y. -H. Lee, D. H. Beardmore. 1980. Mechanism of the enzymatic hydrolysis of cellulose: effect of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22: 177-199.   DOI
95 Balan, V., L. D. C. Sousa, S. P. S. Chundawat, and D. Marshall, L. N. arma and C. K. Chambliss, B. E. Dale. 2009. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra), Biotechnol. Prog., 25: 365-375.   DOI   ScienceOn
96 Borjesson, J., R. Peterson, F. Tjerneld. 2007 Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition, Enzyme microb. Tech., 40: 754-762.   DOI   ScienceOn
97 Chen Chengci, 2008. Biomass for ethanol and cropping systems for bioenergy, Montana State university, http://www.harvestcleanenergy.org/conference/HCE5/H CE5_PPTs/Chen.pdf.
98 Chum, H. L., L. J. Douglas, D. A. Feinberg and H. A. Schroeder. 1985. Evaluation of pretreatments of biomass for enzymatic hydrolysis of cellulose, Solar energy research institute, Golden, Colorado.
99 Chundawat, S. P., B. Venkatesh, and B. E. Dale. 2007. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility, Biotechnol. Bioeng. 96(2): 219-231.   DOI   ScienceOn
100 Kim YS, T. Gorman, 2007. Biomass energy in the USA: A literature review (III)- bioetanol production from biomass and feedstock supply. Mokchae Konghak 35: 1-10.
101 Alkasrawi, M., T. Eriksson, J. Borjesson, A. Wingren, M. Galbe, F. Tjerneld, and G. Zacchi. 2003. The effect of tween-20 on simultaneous saccharification and fermentation of softwood of ethanol, Enzyme microb. Tech. 33(1): 71-78.   DOI   ScienceOn