DOI QR코드

DOI QR Code

목질바이오매스의 효소 당화 기술에 관한 연구 동향

A Research Trend of Enzymatic Hydrolysis of Lignocellulosic Biomass : A Literature Review

  • 투고 : 20101200
  • 심사 : 20100800
  • 발행 : 2010.08.31

초록

The high costs for ethanol production with lignocellulosic biomass as a second generation energy materials currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into sugar that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of the enhancement of enzymatic hydrolysis for lignocellulosic biomass after pretreatment in bioethanol production process.

키워드

참고문헌

  1. Kim YS, T. Gorman, 2007. Biomass energy in the USA: A literature review (III)- bioetanol production from biomass and feedstock supply. Mokchae Konghak 35: 1-10.
  2. Alkasrawi, M., T. Eriksson, J. Borjesson, A. Wingren, M. Galbe, F. Tjerneld, and G. Zacchi. 2003. The effect of tween-20 on simultaneous saccharification and fermentation of softwood of ethanol, Enzyme microb. Tech. 33(1): 71-78. https://doi.org/10.1016/S0141-0229(03)00087-5
  3. Balan, V., L. D. C. Sousa, S. P. S. Chundawat, and D. Marshall, L. N. arma and C. K. Chambliss, B. E. Dale. 2009. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra), Biotechnol. Prog., 25: 365-375. https://doi.org/10.1002/btpr.160
  4. Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875, Process biochem. 39(12): 1843-1848. https://doi.org/10.1016/j.procbio.2003.09.011
  5. Borjesson, J., R. Peterson, F. Tjerneld. 2007 Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition, Enzyme microb. Tech., 40: 754-762. https://doi.org/10.1016/j.enzmictec.2006.06.006
  6. Chen Chengci, 2008. Biomass for ethanol and cropping systems for bioenergy, Montana State university, http://www.harvestcleanenergy.org/conference/HCE5/H CE5_PPTs/Chen.pdf.
  7. Chum, H. L., L. J. Douglas, D. A. Feinberg and H. A. Schroeder. 1985. Evaluation of pretreatments of biomass for enzymatic hydrolysis of cellulose, Solar energy research institute, Golden, Colorado.
  8. Chundawat, S. P., B. Venkatesh, and B. E. Dale. 2007. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility, Biotechnol. Bioeng. 96(2): 219-231. https://doi.org/10.1002/bit.21132
  9. Coughlan, M. P. 1990. Cellulose degradation by fungi, p.1-35. In W. M. Fogarty and C. T. Kelly(ed.), Microbial enzymes and biotechnology, 2nd ed., Elsevier Applied Science, London, UK.
  10. Dadi, A. P., S. Varanasi, C. A. schall. 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95(5): 904-910. https://doi.org/10.1002/bit.21047
  11. Delmer, D. P., and Y. Amor. 1995. Cellulose biosynthesis. Plant cell 7(7): 987-1000. https://doi.org/10.1105/tpc.7.7.987
  12. Divne, C., J. Stahlberg, T. T. Teeri, T.A. Jones. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50$\AA$ long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275: 309-325. https://doi.org/10.1006/jmbi.1997.1437
  13. Donohoe, B. S., M. J. Selig, S. Viamajala, T. B. Vinzant, W. S. Adeny, M. E. Himmel. 2009. Detecting cellulase penetration Into corn stover cell walls by immuno-electron microscopy, Biotechnology and boiengineering, 103(3): 480-489. https://doi.org/10.1002/bit.22281
  14. EERE,2008. Biomass multi-year program plan, U.S.Department of Energy.
  15. Eeriksson, T., J. Borjesson, F. Tjerneld. 2002. Mechanism of surfactant effect in enzymeatic hydrolysis of lignocellulose. Enzyme and microbial technology 31: 353-364. https://doi.org/10.1016/S0141-0229(02)00134-5
  16. Eggeman, T. and R. T. Elander. 2005. Process and economic analysis of pretreatment techmologies, Bioresour Technol. 96(18): 2019-2025. https://doi.org/10.1016/j.biortech.2005.01.017
  17. Eklund, R. and G. Zacchi. 1995. Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme microb. Tech. 17(3): 255-259. https://doi.org/10.1016/0141-0229(94)00014-I
  18. Eriksson, T., J. Borjesson, and F. Tjerneld. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme microb. Tech. 31: 353-364. https://doi.org/10.1016/S0141-0229(02)00134-5
  19. Esteghlalian, A. R., M. Bilodeau, S. D. Mansfield, and J. N. Saddler. 2001. Do enzymatic hydrolyzability and simons' stain reflect the changes in the accessibility of mignocellulosic substrates to cellulase enzymes?, Biotechnology Progress 17(6): 1049-1054. https://doi.org/10.1021/bp0101177
  20. Fan, L. T., Y. -H. Lee, D. H. Beardmore. 1980. Mechanism of the enzymatic hydrolysis of cellulose: effect of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22: 177-199. https://doi.org/10.1002/bit.260220113
  21. Fan, L. T., Y. -H. Lee, D. R. Beardmore. 1981. The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol. Bioeng. 23: 419-424. https://doi.org/10.1002/bit.260230215
  22. Galbe, M. and G. Zacchi. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59(6): 618-628. https://doi.org/10.1007/s00253-002-1058-9
  23. Grethlein, H. E., D. C. Allen, A. O. Converse. 1984. A comparative study of the enzymatic hydrolysis of acid-pretreated white pine and mixed hardwood, Biotechnol. Bioeng. 26: 1498-1505. https://doi.org/10.1002/bit.260261215
  24. Gupta, R., and Y. Y. Lee. 2009. Mechanism of cellulase reaction on pure cellulosic substrates, Biotechnol. Bioeng. 102(6): 1570-1581. https://doi.org/10.1002/bit.22195
  25. Hari Krishna, S, and G. V. Chowdary. 2001. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresource Technol. 77(2): 193-196. https://doi.org/10.1016/S0960-8524(00)00151-6
  26. Haynes C. A., W. Norde. 1994. Globular proteins at solid/liquid interfaces. Colloid Surface B. 2: 517-566. https://doi.org/10.1016/0927-7765(94)80066-9
  27. Henrissat, B., H. Driguez, C. Viet, M. Schulein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 3: 722-726. https://doi.org/10.1038/nbt0885-722
  28. Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J. P. Mornon. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83-95. https://doi.org/10.1016/0378-1119(89)90339-9
  29. Henrissat, B.. 1994. Cellulases and their ineraction with cellulose. Cellulose 1: 169-196. https://doi.org/10.1007/BF00813506
  30. Holtzapple, M. T., J. H. Jun, G. Ashok, S. L. Patibandla, and B. E. dale. 1991. The ammonia freeze explosion (AFEX) process - A practical lignocellulose pretreatment, Appl. Biochem. Biotech. 28-9: 59-74. https://doi.org/10.1007/BF02922589
  31. Itoh, H., M. Wada, Y. Honda, M. Kuwahara, and T. Watanabe. 2003. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wook by ethanolysisi and white rot fungi. J. Biotechnol. 103: 273-280. https://doi.org/10.1016/S0168-1656(03)00123-8
  32. Jeoh, T., C. I. Ishizawa, M. F. Davis, M. E. Himmel, W. S. Andey, D. K. Johnson. 2007. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Boieng. 98: 112-122. https://doi.org/10.1002/bit.21408
  33. Jorgensen, H., J. P. Kutter, and L. Olsson. 2003. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Anal. Biochem. 317(1): 85-93. https://doi.org/10.1016/S0003-2697(03)00052-6
  34. Kadar, Z., Z. Szengyel, K. Reczey. 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crop. Prod. 20: 103-110. https://doi.org/10.1016/j.indcrop.2003.12.015
  35. Katzen, R., P. W. Madson, and D. A. Monceaux. 1995. Use of cellulosic feedstocks for alcohol production, in the alcohols textbook, Nottingham University Press. 37-46.
  36. Khanal, S. K., R.Y. Surampalli, T. C. Zhang, B.P. Lamsal, R.D. Tyagi, and C. M. Kao. 2010. Bioenergy and biofuel from biowastes and biomass, 203, 205, ASCE
  37. Kim, D. W., T. S. Kim, Y. K. Jeong, J. K. Lee. 1992. Adsorption kinetics and behaviors of cellulase components on microcrystalline cellulose. J. Ferment. Bioeng. 73: 461-466. https://doi.org/10.1016/0922-338X(92)90138-K
  38. Kim, S. B., H. J. Kim, and J. C. Kim. 2006a. Enhancement of the enzymatic digestibility of waste newspaper using tween, Appl. Biochem. Biotech, 133(1): 41-57. https://doi.org/10.1385/ABAB:133:1:41
  39. Klemm, D., B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht. 1998. Comprehensive cellulose chemistry. I. Fundamentals and analytical methods, Weinheim, Wiley-VCH.
  40. Kraulis P. J., G. M. Clore, T. A. Jones, G. Pettersson, J. K. C. Knowles, A Gronenborn, A. M. 1989. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrase I from Trichodermas reesei: A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry. 28: 7241-7257. https://doi.org/10.1021/bi00444a016
  41. Kumar, R., C. E. Wyman. 2009a. Access of cellulase to cellulose and lignin for poplar soilds produced by leading pretreatment technologies, Biotechnol. Prog. 25: 807-819. https://doi.org/10.1002/btpr.153
  42. Kumar, R., C. E. Wyman. 2009b. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies, Biotechnology and Bioeng. 102(6): 1544-1557. https://doi.org/10.1002/bit.22203
  43. Kumar. R., C. E. Wyman. 2009c. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress 25(2): 302-314. https://doi.org/10.1002/btpr.102
  44. Lee, D., A. H. C. YU, J. N. Saddler. 1995. Evaluation of cellulase recycling strategies for the hydrolysis of cellulosic substrates. Biotechnol. Bioeng. 45: 328-336. https://doi.org/10.1002/bit.260450407
  45. Lee, J. 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Bioethanol. 56(1): 1-24.
  46. Lee, Y. Y., P. Iyer, and R. W. Torget. 1999. Dilute-acid hydrolysis of lignocellulosic biomass. Adv. Biochem. Eng. Biotechnol. 65: 93-115.
  47. Linde, M., M. Galbe, and G. Zacchi. 2007. Simultaneous saccharification and fermentation of steam-pretreated barely straw at low enzyme loadings and low yeast concentration. Enzyme Microb. Tech. 40(5): 1100-1107. https://doi.org/10.1016/j.enzmictec.2006.08.014
  48. Lu, Y. P., B. Yang, D. Gregg, J. N. Saddler, S. D. Mansfield. 2002. Cellulase dasorption and an evaluatio of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl. Biochem. Biotechnol. 98: 641-654. https://doi.org/10.1385/ABAB:98-100:1-9:641
  49. Lynd, L. R., P. J. Wemier, W. H. van Zyl, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 66(3): 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  50. Mabee W. E., and J. N. Saddler. 2005. IEA bioenergy task 39 liquid biofuels from biomass-progress in enzymatic hydrolysis of lignocellulosicx. Technology Report. http://www.valbiom.be/uploadPDF/Progress in Enzymatic hydrolysis.pdf.
  51. Maija, T., N.Mar-Leena, L. Markus, & V .Lisa. 2003. Cellulases in food processing, Handbook of Food Enzymology, New york, Marcel Dekker.
  52. Malmsten M. and J. M. ALstine. 1996. Adsorption of poly(ethlene glycol) amphiphiles to form coatings which inhibit dasorption. J. Colloid Interf. Sci. 177: 502-512. https://doi.org/10.1006/jcis.1996.0064
  53. Malmsten M., K. Emoto and J. M. ALstine. 1998. Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol)-based coationgs. J. Colloid Interf. Sci. 2020: 507-517.
  54. MarketResearchAnalyst.com, 2008. World's ethanol production forecast 2008-2012.
  55. Mansfield, S. D., C. Mooney, and J. N. Saddler. 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Bioethanol. Prog. 15: 804-816. https://doi.org/10.1021/bp9900864
  56. Marsden, W. L., P. P. Gray, and M. Mandels. 1985. Enzymatic hydrolysis of cellulose in lignocellulosic materials. Critical Reviews in Biotechnology 3(3): 235-276. https://doi.org/10.3109/07388558509150785
  57. McMillan, J. D. 1994. Pretreatment of lignocellulosic biomass. In: Enzymatic Conversion of Biomass for Fuels Production, ACS Symposium Series, pp 292-324.
  58. Mes-Hartree, M., and J. N. Saddler. 1983. The nature of inhibitory metarials present in pretreated lignocellulosic substrates which inhibit the enzymic hydrolysis of cellulose. Biotechnol. Lett. 5(8): 531-536. https://doi.org/10.1007/BF01184944
  59. Mizutani, C., K. Scthumdhavan, P. Howley, and N. Bertoniere. 2002. Effect of a nonionic surfactant on Trichoderma cellulase treatments of regenerated cellulose and cotton yarns. Cellulose 9(1): 83-89. https://doi.org/10.1023/A:1015821815568
  60. Mosier, N. S., R. Hendrickson, M. Brewer, N. Ho, M. Sedlak, R. Dreshel, G. Welch, B. S. Dien, A. Aden, and M. R. Ladisch. 2005c. Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production, Appl. Biochem. Biotech. 125(2): 77-97. https://doi.org/10.1385/ABAB:125:2:077
  61. Mosier, N., R. Hendrickson, N. HO, M. Sedlak, and M. R. Ladisch. 2005a. Optimization of pH controlled liquid hot waterpretreatment of corn stover. Bioresouce Technol. 96(18): 1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013
  62. Mosiera, N., C. Wyman, B. Dalec, R. Elanderd, Y. Y. Lee, M. Holtzapplef, and M. Ladischa. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 96(6): 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  63. Negro, M. J., P. Manzanares, I. Ballesteros, J. M. Oliva, A. Cabanas and M. Ballesteros. 2003. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl. Biochem. Biotech. 105-108: 87-100.
  64. Nidetzky, B., W. Steiner, M. Hyan, M. Claeyssens. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem. J. 298: 705-710. https://doi.org/10.1042/bj2980705
  65. Nielsen, A. D., L. Arleth, P. Westh. 2005. Analysis of protein-surfactant interractions-a titration calorimetric and fluorescence spectroscopic investigation of interactions between humicola insolens cutinase and an anionic surfactant. Biochimica et biophysica Acta 1752: 124-132. https://doi.org/10.1016/j.bbapap.2005.08.001
  66. Ogier, J. C., D. Ballerini, J. P. Leygue, L. Rigal, and J. Pourquie. 1999. "Ethanol production from lignocellulosic biomass," Oil & gas science and technology / revuede l'Institut Francasi du Petrole. 54(1): 67-94. https://doi.org/10.2516/ogst:1999004
  67. Ortega, N., M. D. Busto, and M. Perez-Mateos. 2001. Kinetics of cellulose saccharification by Trichoderma reesei cellulases. Int. Biodeterior. Biodegrad. 47(1): 7-14. https://doi.org/10.1016/S0964-8305(00)00101-3
  68. Park, J. -W., K. Park, H. Song, H. Shin. 2002. Saccharification and adsorption characteristics of modified cellulase with hydrophilic/hydrophobic copolymers. Journal of Biotechnology 93: 203-208. https://doi.org/10.1016/S0168-1656(01)00379-0
  69. Pedersen, M. and A. S. Meyer. 2009. Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol. Prog. 25: 399-408. https://doi.org/10.1002/btpr.141
  70. Pereria, A. N., M. Mobedshahi, M. R. Ladisch. 1988. Preparation of cellodextrins. Methods Enzymol. 160: 26-43. https://doi.org/10.1016/0076-6879(88)60104-2
  71. Peri, S., S. Karra, Y. Y. Lee, and M. N. Karim. 2007. Modeling intrinsic kinetics of enzymetic cellulose hydrolysis. Biotechnology Progress 23: 626-637.
  72. Phillip, B., D. C. Dan, H. P. Fink. 1981. Acid and enzymatic hydrolysis on cellulose in relation to its physical. Proceedings of the international symposium on wood and pulping chemistry: stockholm, sweden, 4: 79-83.
  73. Rabinovich, M. L., M. S. Melnick, and A. V. Bolobova. 2002. The structure and mechanism of action of celluloytic enzymes. Biochemistry (moscow) 67(8): 850-871. https://doi.org/10.1023/A:1019958419032
  74. Rastegari, A. A., A. -K. Borbar, A. T. -Kafrani. 2009. Interaction of cellulase with cationic surfactants: Using surfactant membrane selective electrodes and fluorescence spectroscopy. Colloods and Surfaces 73: 132-139. https://doi.org/10.1016/j.colsurfb.2009.05.010
  75. Rayne, S., and G. Mazza. 2007. Trichoderma reesei derived cellulase activity in three N,N-dimethylethanolammonium akylcarboxylate ionic liquids, hdl:10101/npre. 632.1.
  76. Reinikainen T, L. Ruohonen, T. Nevanen, L. Laaksonen, P. Kraulis, and T. A. Jones. 1992. Investigation of the function of mutated cellulose binding domains of Trichoderma reesei cellobiohydrolase I. Protein 14: 475-482. https://doi.org/10.1002/prot.340140408
  77. Rivers, D. B., G. H. Emert. 1988. Factors affecting the enzymatic hydrolysis of municipal solid waste components. Biotechnol. Bioeng. 26: 278-281.
  78. Roche, C. M., C. J. Dibble, J. S. Knutsen, J. J. Stickel, M. W. Liberatore. 2009. Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2): 290-300. https://doi.org/10.1002/bit.22381
  79. Sassner P., M.Galbe, G.Zacchi, 2008. Theno-econocim evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy 32: 422-430. https://doi.org/10.1016/j.biombioe.2007.10.014
  80. Selig, M. J., S. Viamajala, S. R. Decker, M. P. Tucker, M. E. Himmel, and T. B. Vinzant. 2007. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 23: 1333-1339. https://doi.org/10.1021/bp0702018
  81. Shen, Y., and L. M. Wang. 2004. Kinetics of the cellulase catalyzed hydrolysis of cellulose fibers. Textile Research Journal 74(6): 539-545. https://doi.org/10.1177/004051750407400613
  82. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 83(1): 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  83. Taherzadeh, M. J. 1999. Ethanol from lignocellulose: Physiological effects of inhibitors and fermentation strategies, chemical reaction engineering, chalmers University of technology, Goteborg, sweden.
  84. Taherzadeh, M. J., and K. Karimi. 2007. Enzyme-based hydrolysis progresses for ethanol from lignocellulosic materials: a review. BioResources 2(4): 707-738.
  85. Tenggborg, C., M. Galbe, and G. Zacchi. 2001. Influence of enzyme loading and physical parameters on the enzaymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17(1): 110-117. https://doi.org/10.1021/bp000145+
  86. Thaerzadeh, M. J., R. Eklund, L. Gustafsson, C. Niklasson, and G. Liden. 1997. Characterization and fermentation of dilute-acid hydrolyzates from wood. Industrial & Engineering Chemistry Research 36(11): 4659-4665. https://doi.org/10.1021/ie9700831
  87. Tu, M., R. P. Chandra, and J. N. Saddler. 2007a. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnology Progress 23(2): 398-406. https://doi.org/10.1021/bp060354f
  88. Tu, M., R. P. Chandra, and J. N. Saddler. 2007b. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgeploe pine. Biotechnol. Prog. 23: 1130-1137.
  89. Tu, M., X. Zhang, and M. Paice, P. McFalane, and J. N. Saddler. 2009. Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine. Biotechnol. Prog. 25: 1122-1129. https://doi.org/10.1002/btpr.198
  90. Wong, K. K. Y., K. F. Deverell, K. L. Mackie, T. A. Clark, L. A. Donaldson. 1988. The relationship btween fiber porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol. Bioeng. 31: 447-456. https://doi.org/10.1002/bit.260310509
  91. Wu, J., and L. K. Ju. 1998. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 649-652. https://doi.org/10.1021/bp980040v
  92. Wyman, C. E. 1996. Handbook on Bioethanol: Production and Utilization, Washington, DC, Taylor & Francis.
  93. Wyman, C. E., B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, Y. Y. Lee, C. Mitchinson, H. N. Saddler. 2009. Comparative sugar recovery and fermentation date following pretreatment of poplar wood by leading technolgies. Biotechnology Progress 25: 333-339. https://doi.org/10.1002/btpr.142
  94. Yang, B., C. E. Wyman. 2006. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering 94(4): 611-617. https://doi.org/10.1002/bit.20750
  95. Yoshida, M., Y. Liu, S. Uchida, K. Kawarada, Y. Ukagami, H. chinose, S. Kaneko, K. Fukuda. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of miscanthus sinensis to monosaccharides. Bioscience Biotechnology and Biochemistry 72(3): 805-810. https://doi.org/10.1271/bbb.70689
  96. Zeng, M., N. S. Mosier, C. P. Huang, D. M. Sherman, and M. R. Ladisch. 2007. Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol. Bioeng. 97(2): 265-278. https://doi.org/10.1002/bit.21298
  97. Zhang, Y. -H. P., and L. R. Lynd. 2004. Towards and aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulose systems. Biotechnology and Bioengineering 88: 797-824. https://doi.org/10.1002/bit.20282
  98. Zhang, Y. -H. P., D. J. Schell, J. D. McMillan. 2007. Methodological analysis for determination of enzymatic digestibility of cellulosic materials. Biotechnology and Bioengineering 96(1): 188-194. https://doi.org/10.1002/bit.21178
  99. Zhang, Y. -H. P., L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellilose: noncomplexed cellulase system. Biotechnol Bioeng. 88(7):797-824. https://doi.org/10.1002/bit.20282
  100. Zhu, Z., N. Sathitsuksanoh, T. Vinzant, D. J. Schell, J. D. McMillan, Y. -H. P. Zhang. 2009. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fraction: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol. Bioeng. 103: 715-724. https://doi.org/10.1002/bit.22307
  101. Zuhai, S. A. 2008. The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresource Technology 99: 4078-4085. https://doi.org/10.1016/j.biortech.2007.09.003