• Title/Summary/Keyword: lightweight block

Search Result 155, Processing Time 0.025 seconds

Improved Related-key Attack against Recent Lightweight Block Cipher PRINCE (최신 경량 블록 암호 PRINCE에 대한 향상된 연관키 공격)

  • Ju, Wangho;An, Hyunjung;Yi, Okyeon;Kang, Ju-Sung;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.3
    • /
    • pp.445-451
    • /
    • 2014
  • The related-key attack is regarded as one of the important cryptanalytic tools for the security evaluation of block ciphers. This is due to the fact that this attack can be effectively applied to schemes like block-cipher based hash functions whose block-cipher keys can be controlled as their messages. In this paper, we improve the related-key attack on lightweight block cipher PRINCE proposed in FSE 2013. Our improved related-key attack on PRINCE reduces data complexity from $2^{33}$ [4] to 2.

Resource-Efficient Object Detector for Low-Power Devices (저전력 장치를 위한 자원 효율적 객체 검출기)

  • Akshay Kumar Sharma;Kyung Ki Kim
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-20
    • /
    • 2024
  • This paper presents a novel lightweight object detection model tailored for low-powered edge devices, addressing the limitations of traditional resource-intensive computer vision models. Our proposed detector, inspired by the Single Shot Detector (SSD), employs a compact yet robust network design. Crucially, it integrates an 'enhancer block' that significantly boosts its efficiency in detecting smaller objects. The model comprises two primary components: the Light_Block for efficient feature extraction using Depth-wise and Pointwise Convolution layers, and the Enhancer_Block for enhanced detection of tiny objects. Trained from scratch on the Udacity Annotated Dataset with image dimensions of 300x480, our model eschews the need for pre-trained classification weights. Weighing only 5.5MB with approximately 0.43M parameters, our detector achieved a mean average precision (mAP) of 27.7% and processed at 140 FPS, outperforming conventional models in both precision and efficiency. This research underscores the potential of lightweight designs in advancing object detection for edge devices without compromising accuracy.

A Study on Lightweight Block Cryptographic Algorithm Applicable to IoT Environment (IoT 환경에 적용 가능한 경량화 블록 암호알고리즘에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • The IoT environment provides an infinite variety of services using many different devices and networks. The development of the IoT environment is directly proportional to the level of security that can be provided. In some ways, lightweight cryptography is suitable for IoT environments, because it provides security, higher throughput, low power consumption and compactness. However, it has the limitation that it must form a new cryptosystem and be used within a limited resource range. Therefore, it is not the best solution for the IoT environment that requires diversification. Therefore, in order to overcome these disadvantages, this paper proposes a method suitable for the IoT environment, while using the existing block cipher algorithm, viz. the lightweight cipher algorithm, and keeping the existing system (viz. the sensing part and the server) almost unchanged. The proposed BCL architecture can perform encryption for various sensor devices in existing wire/wireless USNs (using) lightweight encryption. The proposed BCL architecture includes a pre/post-processing part in the existing block cipher algorithm, which allows various scattered devices to operate in a daisy chain network environment. This characteristic is optimal for the information security of distributed sensor systems and does not affect the neighboring network environment, even if hacking and cracking occur. Therefore, the BCL architecture proposed in the IoT environment can provide an optimal solution for the diversified IoT environment, because the existing block cryptographic algorithm, viz. the lightweight cryptographic algorithm, can be used.

The Hardware Design and Implementation of a New Ultra Lightweight Block Cipher (새로운 초경량 블록 암호의 하드웨어 설계 및 구현)

  • Gookyi Dennis, A.N.;Park, Seungyong;Ryoo, Kwangki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.103-108
    • /
    • 2016
  • With the growing trend of pervasive computing, (the idea that technology is moving beyond personal computers to everyday devices) there is a growing demand for lightweight ciphers to safeguard data in a network that is always available. For all block cipher applications, the AES is the preferred choice. However, devices used in pervasive computing have extremely constraint environment and as such the AES will not be suitable. In this paper we design and implement a new lightweight compact block cipher that takes advantage of both S-P network and the Feistel structure. The cipher uses the S-box of PRESENT algorithm and a key dependent one stage omega permutation network is used as the cipher's P-box. The cipher is implemented on iNEXT-V6 board equipped with virtex-6 FPGA. The design synthesized to 196 slices at 337 MHz maximum clock frequency.

Design of Encryption/Decryption IP for Lightweight Encryption LEA (경량 블록암호 LEA용 암·복호화 IP 설계)

  • Sonh, Seungil
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2017
  • Lightweight Encryption Algorithm(LEA) was developed by National Security Research Institute(NSRI) in 2013 and targeted to be suitable for environments for big data processing, cloud service, and mobile. LEA specifies the 128-bit message block size and 128-, 192-, and 256-bit key sizes. In this paper, block cipher LEA algorithm which can encrypt and decrypt 128-bit messages is designed using Verilog-HDL. The designed IP for encryption and decryption has a maximum throughput of 874Mbps in 128-bit key mode and that of 749Mbps in 192 and 656Mbps in 256-bit key modes on Xilinx Vertex5. The cryptographic IP of this paper is applicable as security module of the mobile areas such as smart card, internet banking, e-commerce and IoT.

Correlation Power Analysis Attack on Lightweight Block Cipher LEA and Countermeasures by Masking (경량 블록암호 LEA에 대한 상관관계 전력분석 공격 및 마스킹 대응 기법)

  • An, Hyo-Sik;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1276-1284
    • /
    • 2017
  • Lightweight Encryption Algorithm (LEA) that was standardized as a lightweight block cipher was implemented with 8-bit data path, and the vulnerability of LEA encryption processor to correlation power analysis (CPA) attack was analyzed. The CPA used in this paper detects correct round keys by analyzing correlation coefficient between the Hamming distance of the computed data by applying hypothesized keys and the power dissipated in LEA crypto-processor. As a result of CPA attack, correct round keys were detected, which have maximum correlation coefficients of 0.6937, 0.5507, and this experimental result shows that block cipher LEA is vulnerable to power analysis attacks. A masking method based on TRNG was proposed as a countermeasure to CPA attack. By applying masking method that adds random values obtained from TRNG to the intermediate data of encryption, incorrect round keys having maximum correlation coefficients of 0.1293, 0.1190 were analyzed. It means that the proposed masking method is an effective countermeasure to CPA attack.

High Speed Implementation of LEA on ARMv8 (ARMv8 상에서 LEA 암호화 고속 구현)

  • Seo, Hwa-jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1929-1934
    • /
    • 2017
  • Lightweight block cipher (Lightweight Encryption Algorithm, LEA), is the most promising block cipher algorithm due to its efficient implementation feature and high security level. The LEA block cipher is widely used in real-field applications and there are many efforts to enhance the performance of LEA in terms of execution timing to achieve the high availability under any circumstances. In this paper, we enhance the performance of LEA block cipher, particularly on ARMv8 processors. The LEA implementation is optimized by using new SIMD instructions namely NEON engine and 24 LEA encryption operations are simultaneously performed in parallel way. In order to reduce the number of memory access, we utilized the all NEON registers to retain the intermediate results. Finally, we evaluated the performance of the LEA implementation, and the proposed implementations on Apple A7 and Apple A9 achieved the 2.4 cycles/byte and 2.2 cycles/byte, respectively.

An Efficient Hardware Implementation of Lightweight Block Cipher Algorithm CLEFIA for IoT Security Applications (IoT 보안 응용을 위한 경량 블록 암호 CLEFIA의 효율적인 하드웨어 구현)

  • Bae, Gi-chur;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.351-358
    • /
    • 2016
  • This paper describes an efficient hardware implementation of lightweight block cipher algorithm CLEFIA. The CLEFIA crypto-processor supports for three master key lengths of 128/192/256-bit, and it is based on the modified generalized Feistel network (GFN). To minimize hardware complexity, a unified processing unit with 8 bits data-path is designed for implementing GFN that computes intermediate keys to be used in round key scheduling, as well as carries out round transformation. The GFN block in our design is reconfigured not only for performing 4-branch GFN used for round transformation and intermediate round key generation of 128-bit, but also for performing 8-branch GFN used for intermediate round key generation of 256-bit. The CLEFIA crypto-processor designed in Verilog HDL was verified by using Virtex5 XC5VSX50T FPGA device. The estimated throughput is 81.5 ~ 60 Mbps with 112 MHz clock frequency.

Quantum Circuit Implementation of the LED Block Cipher with Compact Qubit (최적의 큐빗수를 만족하는 LED 블록암호에 대한 양자 회로 구현)

  • Min-ho Song;Kyung-bae Jang;Gyeong-ju Song;Won-woong Kim;Hwa-Jeong Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.383-389
    • /
    • 2023
  • The development of quantum computers and the emergence of quantum algorithms such as Shor's algorithm and Grover's algorithm pose a significant threat to the security of existing cipher systems. Quantum algorithms can efficiently perform mathematical operations that take a long time on traditional computers. This characteristic can significantly reduce the time it takes to break modern cipher systems that rely on mathematical problems. To prepare for quantum attacks based on these algorithms, existing ciphers must be implemented as quantum circuits. Many ciphers have already been implemented as quantum circuits, analyzing quantum resources required for attacks and verifying the quantum strength of the cipher. In this paper, we present quantum circuits for LED lightweight block ciphers and explain each function of quantum circuits. Thereafter, the resources for the LED quantum circuit are estimated and evaluated by comparing them with other lightweight block ciphers.

BlockSim++: A Lightweight Block-oriented Hierarchical Modeling and Simulation Framework for Continuous Systems (BlockSim++: 연속시스템의 계층적 모델링 및 시뮬레이션을 위한 블록기반 경량 프레임워크)

  • Song, Hae-Sang;Se, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.11-22
    • /
    • 2012
  • This paper proposes for practical engineers a lightweight modeling and simulation environment for continuous system models specified in ordinary differential equations, which are time-domain specification of such systems. We propose a block-oriented specification formalism that has two levels: one for atomic behavior and the other the structure of models. Also we provide with a simulation framework, called BlockSim++, which make models specified in the block-oriented formalism be easily translated in object-oriented program that runs with the proposed simulation framework. The proposed formalism and framework has advantage of reuse such that it can be easily integrated into application programs and heterogeneous simulators. We illustrates the usefulness of the proposed framework by a simple hybrid modeling simulation example.