• Title/Summary/Keyword: legendre polynomials

Search Result 81, Processing Time 0.026 seconds

p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities (재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using Ritz technique

  • Ghannadpour, S. Amir M.;Khajeh, Selma
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.393-406
    • /
    • 2022
  • In the present article, functionally graded small-scaled plates based on modified strain gradient theory (MSGT) are studied for analyzing the nonlinear bending and post-buckling responses. Von-Karman's assumptions are applied to incorporate geometric nonlinearity and the first-order shear deformation theory is used to model the plates. Modified strain gradient theory includes three length scale parameters and is reduced to the modified couple stress theory (MCST) and the classical theory (CT) if two or all three length scale parameters become zero, respectively. The Ritz method with Legendre polynomials are used to approximate the unknown displacement fields. The solution is found by the minimization of the total potential energy and the well-known Newton-Raphson technique is used to solve the nonlinear system of equations. In addition, numerical results for the functionally graded small-scaled plates are obtained and the effects of different boundary conditions, material gradient index, thickness to length scale parameter and length to thickness ratio of the plates on nonlinear bending and post-buckling responses are investigated and discussed.

Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle

  • Cho, C.I.;Alam, M.;Choi, T.J.;Choy, Y.H.;Choi, J.G.;Lee, S.S.;Cho, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.607-614
    • /
    • 2016
  • The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs), and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK), fat yield (FAT), protein yield (PROT), and solids-not-fat yield (SNF). The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP) of the third to fifth order (L3-L5), fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order). The residual variances in the models were either homogeneous (HOM) or heterogeneous (15 classes, HET15; 60 classes, HET60). A total of nine models (3 orders of $polynomials{\times}3$ types of residual variance) including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC) and/or Schwarz Bayesian information criteria (BIC) statistics to identify the model(s) of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF) and L4-HET15 (FAT), which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first lactation. Genetic variances for studied traits tended to decrease during the earlier stages of lactation, which were followed by increases in the middle and decreases further at the end of lactation. With regards to the fitness of the models and the differential genetic parameters across the lactation stages, we could estimate genetic parameters more accurately from RRMs than from lactation models. Therefore, we suggest using RRMs in place of lactation models to make national dairy cattle genetic evaluations for milk production traits in Korea.

Subparametric Element Based on Partial-linear Layerwise Theory for the Analysis of Orthotropic Laminate Composites (직교이방성 적층구조 해석을 위한 부분-선형 층별이론에 기초한 저매개변수요소)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • This paper presents the subparametric finite element model formulated by partial-linear layerwise theory for the analysis of laminate composites. The proposed model is based on refined approximations of two dimensional plane for orthotropic thick laminate plate as well as thin case. Three dimensional problem can be reduced to two dimensional case by assuming piecewise linear variation of in-plane displacement and a constant value of out-of-plane displacement across the thickness. The integrals of Legendre polynomials are chosen to define displacement fields and Gauss-Lobatto numerical integration is implemented in order to directly obtain maximum values occurred at the nodal points of each layer without other extrapolation techniques. The validity and characteristics of the proposed model have been tested by using orthotropic multilayered plate problem as compared to the values available in the published references. In this study, the convergence test has been carried out to determine the optimal layer model in terms of central deflection and stresses. Also, the distribution of displacements and stresses across the thickness has been investigated as the number of layer is increased.

PREDICTION OF RESIDUAL STRESS PROFILE IN SINGLE-SIDED BUTT WELD USING COMPLIANCE METHOD

  • Kim, Yooil;Jeon, Yu-Chul;Kang, Joong-Kyoo;Han, Yong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.156-161
    • /
    • 2002
  • It depends on the joint configuration, dimensions and constraints on the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of this type of joint in order to prevent excessively long life caused by compressive residual stress. in this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial tenn. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface stayed positive, however, it turned into the negative value as soon as it passed through 2 or 3 mm depth. Several fatigue tests were also carried out under zero stress ratio. Test results showed that fatigue life coincides well with the design cuive of butt joint in British Standards, which supports that it is tensile residual stress that exists near the weld root.

  • PDF

p-Version Finite Element Model of Stiffened Plates by Hierarchic $C^0$-Element (계층적 $C^0$ - 요소에 의한 보강판의 p-Version 유한요소 모델)

  • 홍종현;우광성;신영식
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 1996
  • A general stiffener element which includes transverse shear deformation is formulated using the p-version finite element method. Hierarchic C/sup o/-shape functions, derived from Integrals of Legendre polynomials, are used to define the assembled stiffness matrix of the stiffener with respect to the local reference frame is transformed to the plate reference system by applying the appropriate transformation matrices in order to insure compatibility of displacements at the junction of the stiffener and plate. The transformation matrices which account for the orientation and the eccentricity effects of the stiffener with respect to the plate reference axes are used to find local behavior at the junction of the stiffener and the relative contributions of the plate and stiffener to the strength of the composite system. The results obtained by the p-version finite element method are comared with the results in literatures, especially those by the h-version finite element analysis program, MICROFEAP-II.

  • PDF

Stress Intensity Factor of Single Edge Cracked Plates Considering Materials and Geometry of Patch by p-Convergent Partial Layerwise Model (p-수렴 부분층별모델에 의한 일변균열판의 패치재료 및 기하형상에 따른 응력확대계수)

  • Ahn, Hyeon-Ji;Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.191-198
    • /
    • 2010
  • This study investigated that the stress reduction of single edge cracked plates with patch repairs according to different type of patching such as material, size and thickness of patch and adhesive as well as single sided or double sided patches. As a numerical tool, the p-convergent partial layerwise model has been employed. The proposed model is formulated by assuming piecewise linear variation of in-plane displacement and a constant value of out-of-plane displacements across thickness. The integrals of Legendre polynomials are chosen to define displacement fields and Gauss-Lobatto numerical integration is implemented in order to directly obtain maximum values occurred at the nodal points of each layer without other extrapolation techniques. Also, total strain energy release rate method is adopted to obtain stress intensity factors. Numerical examples are presented not only to demonstrate the stress reduction effect in terms of non-dimensional stress intensity factor and deflection with respect to different type of patch repairs, but also the accuracy of proposed model.

Partial Layerwise-to-ESL Coupling Elements for Multiple Model Analysis (다중모델 해석을 위한 부분층별-등가단층 결합요소)

  • Shin, Young-Sik;Woo, Kwang-Sung;Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.267-275
    • /
    • 2009
  • This paper presents the p-convergent coupling element on the basis of the ESSE(equivalent single layer shell element) and the PLLE(partial-linear layerwise element) to analyze laminated composite plates. The ESSE is formulated by the degenerated shell theory, on the other hand, the assumption of the PLLE is piecewise linear variation of the in-plane displacement and a constant value of lateral displacement across the thickness. The proposed finite element model is based on p-convergence approach. The integrals of Legendre polynomials and Gauss-Lobatto technique are chosen to interpolate displacement fields and to implement numerical quadrature, respectively. This study has been focused on the verification of p-convergent element. For this purpose, various finite element multiple models associated with the combination of ESSE and PLLE elements are tested to show numerical stability. The simple examples such as a cantilever beam subjected vertical load and a plate with tension are adopted to evaluate the performance of proposed element.

p-Adaptive Analysis by Three Dimensional Hierarchical Hexahedral Solid Element (3차원 계층적 육면체 고체요소에 의한 p-적응적 해석)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Shin, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents a finite element formulation for the three-dimensional hierarchical solid element using Integrals of Legendre polynomials. The proposed hexahedral solid element is composed of four different modes including vertex, edge, face, and internal mode, respectively. The eigenvalue and patch test have been carried out to confirm the zero-energy mode and constant strain condition. In addition to these, a posteriori error estimation has been studied for the p-adaptive finite element analysis that is based on a smoothing technique to compute a post-processed solution from the finite element solution. The uniform p-refinement and non-uniform p-refinement are compared in terms of convergence rate as the number of degree of freedom is increased. The simple cantilever beam is tested to show the performance of the proposed solid element.

  • PDF

p-Version Finite Element Model of Cracked Thick Plates Including Shear Deformation under Flexure (휨을 받는 두꺼운 균열판의 전단변형을 고려한 p-Version 유한요소모델)

  • Lee, Chae Gyu;Woo, Kwang Sung;Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1289-1298
    • /
    • 1994
  • The new p-version crack model is proposed to estimate the stress intensity factors of the thick cracked plate under flexure. The proposed model is based on high order theory and $C^{\circ}$-plate element including shear deformation. The displacements fields are defined by integrals of Legendre polynomials which can be classified into three groups such as basic mode, side mode and internal mode. The computer implementation allows arbitrary variations of p-level Up to a maximum value of 10. The stress intensity factors are computed by virtual crack extention approach. The effects of ratios of thickness to crack length(h/a), crack length to width(a/W) and boundary conditions are investigated. Very good agreement with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF